Two nanomicas of similar composition, containing muscovite and quartz, but with different particle size distributions, have been used to prepare transparent epoxy nanocomposites. Their homogeneous dispersion, due to the nano-size, was achieved even without being organically modified, and no aggregation of the nanoparticles was observed, thus maximizing the specific interface between matrix and nanofiller. No exfoliation or intercalation has been observed by XRD, despite the significant dispersion of the filler in the matrix which produced nanocomposites with a loss in transparency in the visible domain of less than 10% in the presence of 1% wt and 3% wt of mica fillers. The presence of micas does not affect the thermal behavior of the nanocomposites, which remains similar to that of the neat epoxy resin. The mechanical characterization of the epoxy resin composites revealed an increased Young's modulus, whereas tensile strength was reduced. A peridynamics-based representative volume element approach has been implemented to estimate the effective Young's modulus of the nanomodified materials. The results obtained through this homogenization procedure have been used as input for the analysis of the nanocomposite fracture toughness, which has been carried out by a classical continuum mechanics-peridynamics coupling approach. Comparison with the experimental data confirms the capability of the peridynamics-based strategies to properly model the effective Young's modulus and fracture toughness of epoxy-resin nanocomposites. Finally, the new mica-based composites exhibit high values of volume resistivity, thus being excellent candidates as insulating materials.
Chemical and Mechanical Characterization of Unprecedented Transparent Epoxy-Nanomica Composites-New Model Insights for Mechanical Properties
Pontefisso, AlessandroConceptualization
;Zeni, ElenaInvestigation
;Lanero, FrancescoInvestigation
;Zorzi, FedericoInvestigation
;Zaccariotto, MircoData Curation
;Galvanetto, UgoData Curation
;Fiorentin, PietroInvestigation
;Gobbo, RenatoInvestigation
;Bertani, RobertaConceptualization
;Sgarbossa, PaoloConceptualization
2023
Abstract
Two nanomicas of similar composition, containing muscovite and quartz, but with different particle size distributions, have been used to prepare transparent epoxy nanocomposites. Their homogeneous dispersion, due to the nano-size, was achieved even without being organically modified, and no aggregation of the nanoparticles was observed, thus maximizing the specific interface between matrix and nanofiller. No exfoliation or intercalation has been observed by XRD, despite the significant dispersion of the filler in the matrix which produced nanocomposites with a loss in transparency in the visible domain of less than 10% in the presence of 1% wt and 3% wt of mica fillers. The presence of micas does not affect the thermal behavior of the nanocomposites, which remains similar to that of the neat epoxy resin. The mechanical characterization of the epoxy resin composites revealed an increased Young's modulus, whereas tensile strength was reduced. A peridynamics-based representative volume element approach has been implemented to estimate the effective Young's modulus of the nanomodified materials. The results obtained through this homogenization procedure have been used as input for the analysis of the nanocomposite fracture toughness, which has been carried out by a classical continuum mechanics-peridynamics coupling approach. Comparison with the experimental data confirms the capability of the peridynamics-based strategies to properly model the effective Young's modulus and fracture toughness of epoxy-resin nanocomposites. Finally, the new mica-based composites exhibit high values of volume resistivity, thus being excellent candidates as insulating materials.File | Dimensione | Formato | |
---|---|---|---|
Ongaro-2023-Chemical-and-mechanical-characteriz.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
9.7 MB
Formato
Adobe PDF
|
9.7 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.