Endothelial cell function is mediated by different mechanisms in different vascular beds. Moreover, in humans, endothelial cell dysfunction triggers and accelerates the progression of cardiovascular and chronic kidney diseases. Progression of such diseases can be in part mitigated by the control of cardiovascular risk factors and drugs targeting different systems, including endothelin receptor antagonists (ERAs), renin-angiotensin aldosterone antagonists and agents affecting glucose metabolism, all of which were shown to improve endothelial cell function. In recent years, the microRNAs, which are endogenous regulators of gene expression, have been identified as transmitters of information from endothelial cells to vascular smooth muscle cells, suggesting that they can entail tools to assess the endothelial cell dysfunction in arterial hypertension and target for pharmacologic intervention. This article critically reviews current challenges and limitations of available techniques for the invasive and noninvasive assessment of endothelial cell function, and also discusses therapeutic aspects as well as directions for future research in the areas of endothelial cell biology and pathophysiology in humans.
Challenges in the evaluation of endothelial cell dysfunction: a statement from the European Society of Hypertension Working Group on Endothelin and Endothelial Factors
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Rossi, Gian Paolo
;Seccia, Teresa M
	
		
		
	
			2023
Abstract
Endothelial cell function is mediated by different mechanisms in different vascular beds. Moreover, in humans, endothelial cell dysfunction triggers and accelerates the progression of cardiovascular and chronic kidney diseases. Progression of such diseases can be in part mitigated by the control of cardiovascular risk factors and drugs targeting different systems, including endothelin receptor antagonists (ERAs), renin-angiotensin aldosterone antagonists and agents affecting glucose metabolism, all of which were shown to improve endothelial cell function. In recent years, the microRNAs, which are endogenous regulators of gene expression, have been identified as transmitters of information from endothelial cells to vascular smooth muscle cells, suggesting that they can entail tools to assess the endothelial cell dysfunction in arterial hypertension and target for pharmacologic intervention. This article critically reviews current challenges and limitations of available techniques for the invasive and noninvasive assessment of endothelial cell function, and also discusses therapeutic aspects as well as directions for future research in the areas of endothelial cell biology and pathophysiology in humans.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											challenges_in_the_evaluation_of_endothelial_cell.1.pdf
										
																				
									
										
											 Accesso riservato 
											Tipologia:
											Published (Publisher's Version of Record)
										 
									
									
									
									
										
											Licenza:
											
											
												Accesso privato - non pubblico
												
												
												
											
										 
									
									
										Dimensione
										2.79 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								2.79 MB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




