Halloysite nanotubes can be used for the preparation of solid catalysts. Owing to their natural availability at low-cost as well as to their large and easy-to-functionalize surface, they can be conveniently activated with mineral acids or derivatized with acidic groups. Nevertheless, the use of HNTs as catalysts in complex transformations is still limited. Herein, we report two strategies to utilize HNT-based materials as solid acidic catalysts for the Biginelli reaction. To this aim, two methods for increasing the number of acidic sites on the HNTs were explored: (i) the treatment with piranha solution (Pir-HNTs) and (ii) the functionalization with phenylboronic acid (in particular with benzene-1,4-diboronic acid: the sample is denoted as HNT-BOA). Interestingly, both strategies enhance the performance of the multicomponent reaction. Pir-HNTs and HNT-BOA show an increased reactivity (72% and 89% yield, respectively) in comparison with pristine HNTs (52%). Additionally, Pir-HNTs can be reused up to five times without significant performance loss. Moreover, the method also displays good reaction scope, as demonstrated by the preparation of 12 different 3,4-dihydropyrimidinones in up to 71% yield. Therefore, the described strategies are promising for enhancing the acidity of the HNTs as catalysts for the organic reaction. © 2023 by the authors.

Halloysite Nanotubes as Bimodal Lewis/Brønsted Acid Heterogeneous Catalysts for the Synthesis of Heterocyclic Compounds

Carraro, Mauro
Writing – Review & Editing
2023

Abstract

Halloysite nanotubes can be used for the preparation of solid catalysts. Owing to their natural availability at low-cost as well as to their large and easy-to-functionalize surface, they can be conveniently activated with mineral acids or derivatized with acidic groups. Nevertheless, the use of HNTs as catalysts in complex transformations is still limited. Herein, we report two strategies to utilize HNT-based materials as solid acidic catalysts for the Biginelli reaction. To this aim, two methods for increasing the number of acidic sites on the HNTs were explored: (i) the treatment with piranha solution (Pir-HNTs) and (ii) the functionalization with phenylboronic acid (in particular with benzene-1,4-diboronic acid: the sample is denoted as HNT-BOA). Interestingly, both strategies enhance the performance of the multicomponent reaction. Pir-HNTs and HNT-BOA show an increased reactivity (72% and 89% yield, respectively) in comparison with pristine HNTs (52%). Additionally, Pir-HNTs can be reused up to five times without significant performance loss. Moreover, the method also displays good reaction scope, as demonstrated by the preparation of 12 different 3,4-dihydropyrimidinones in up to 71% yield. Therefore, the described strategies are promising for enhancing the acidity of the HNTs as catalysts for the organic reaction. © 2023 by the authors.
2023
File in questo prodotto:
File Dimensione Formato  
nanomaterials-13-00394-v2.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 3.74 MB
Formato Adobe PDF
3.74 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3476018
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact