Non-Terrestrial Networks (NTNs) are expected to be a key component of 6th generation (6G) networks to support broadband seamless Internet connectivity and expand the coverage even in rural and remote areas. In this context, High Altitude Platforms (HAPs) can act as edge servers to process computational tasks offloaded by energy-constrained terrestrial devices such as Internet of Things (IoT) sensors and ground vehicles (GVs). In this letter, we analyze the opportunity to support Vehicular Edge Computing (VEC) via HAP in a rural scenario where GVs can decide whether to process data onboard or offload them to a HAP. We characterize the system as a set of queues in which computational tasks arrive according to a Poisson arrival process. Then, we assess the optimal VEC offloading factor to maximize the probability of real-time service, given latency and computational capacity constraints.

Real-Time HAP-Assisted Vehicular Edge Computing for Rural Areas

Traspadini A.;Giordani M.;Zorzi M.
2023

Abstract

Non-Terrestrial Networks (NTNs) are expected to be a key component of 6th generation (6G) networks to support broadband seamless Internet connectivity and expand the coverage even in rural and remote areas. In this context, High Altitude Platforms (HAPs) can act as edge servers to process computational tasks offloaded by energy-constrained terrestrial devices such as Internet of Things (IoT) sensors and ground vehicles (GVs). In this letter, we analyze the opportunity to support Vehicular Edge Computing (VEC) via HAP in a rural scenario where GVs can decide whether to process data onboard or offload them to a HAP. We characterize the system as a set of queues in which computational tasks arrive according to a Poisson arrival process. Then, we assess the optimal VEC offloading factor to maximize the probability of real-time service, given latency and computational capacity constraints.
File in questo prodotto:
File Dimensione Formato  
Real-Time_HAP_Rural_Areas.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 579.91 kB
Formato Adobe PDF
579.91 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3476741
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact