: The adoption of preventive management decisions is crucial to dealing with metabolic impairments in dairy cattle. Various serum metabolites are known to be useful indicators of the health status of cows. In this study, we used milk Fourier-transform mid-infrared (FTIR) spectra and various machine learning (ML) algorithms to develop prediction equations for a panel of 29 blood metabolites, including those related to energy metabolism, liver function/hepatic damage, oxidative stress, inflammation/innate immunity, and minerals. For most traits, the data set comprised observations from 1,204 Holstein-Friesian dairy cows belonging to 5 herds. An exception was represented by β-hydroxybutyrate prediction, which contained observations from 2,701 multibreed cows pertaining to 33 herds. The best predictive model was developed using an automatic ML algorithm that tested various methods, including elastic net, distributed random forest, gradient boosting machine, artificial neural network, and stacking ensemble. These ML predictions were compared with partial least squares regression, the most commonly used method for FTIR prediction of blood traits. Performance of each model was evaluated using 2 cross-validation (CV) scenarios: 5-fold random (CVr) and herd-out (CVh). We also tested the best model's ability to classify values precisely in the 2 extreme tails, namely, the 25th (Q25) and 75th (Q75) percentiles (true-positive prediction scenario). Compared with partial least squares regression, ML algorithms achieved more accurate performance. Specifically, elastic net increased the R2 value from 5% to 75% for CVr and 2% to 139% for CVh, whereas the stacking ensemble increased the R2 value from 4% to 70% for CVr and 4% to 150% for CVh. Considering the best model, with the CVr scenario, good prediction accuracies were obtained for glucose (R2 = 0.81), urea (R2 = 0.73), albumin (R2 = 0.75), total reactive oxygen metabolites (R2 = 0.79), total thiol groups (R2 = 0.76), ceruloplasmin (R2 = 0.74), total proteins (R2 = 0.81), globulins (R2 = 0.87), and Na (R2 = 0.72). Good prediction accuracy in classifying extreme values was achieved for glucose (Q25 = 70.8%, Q75 = 69.9%), albumin (Q25 = 72.3%), total reactive oxygen metabolites (Q25 = 75.1%, Q75 = 74%), thiol groups (Q75 = 70.4%), total proteins (Q25 = 72.4%, Q75 = 77.2.%), globulins (Q25 = 74.8%, Q75 = 81.5%), and haptoglobin (Q75 = 74.4%). In conclusion, our study shows that FTIR spectra can be used to predict blood metabolites with relatively good accuracy, depending on trait, and are a promising tool for large-scale monitoring.

Prediction of detailed blood metabolic profile using milk infrared spectra and machine learning methods in dairy cattle

Giannuzzi, Diana
;
Pegolo, Sara;Tagliapietra, Franco;Schiavon, Stefano;Gallo, Luigi;Cecchinato, Alessio
2023

Abstract

: The adoption of preventive management decisions is crucial to dealing with metabolic impairments in dairy cattle. Various serum metabolites are known to be useful indicators of the health status of cows. In this study, we used milk Fourier-transform mid-infrared (FTIR) spectra and various machine learning (ML) algorithms to develop prediction equations for a panel of 29 blood metabolites, including those related to energy metabolism, liver function/hepatic damage, oxidative stress, inflammation/innate immunity, and minerals. For most traits, the data set comprised observations from 1,204 Holstein-Friesian dairy cows belonging to 5 herds. An exception was represented by β-hydroxybutyrate prediction, which contained observations from 2,701 multibreed cows pertaining to 33 herds. The best predictive model was developed using an automatic ML algorithm that tested various methods, including elastic net, distributed random forest, gradient boosting machine, artificial neural network, and stacking ensemble. These ML predictions were compared with partial least squares regression, the most commonly used method for FTIR prediction of blood traits. Performance of each model was evaluated using 2 cross-validation (CV) scenarios: 5-fold random (CVr) and herd-out (CVh). We also tested the best model's ability to classify values precisely in the 2 extreme tails, namely, the 25th (Q25) and 75th (Q75) percentiles (true-positive prediction scenario). Compared with partial least squares regression, ML algorithms achieved more accurate performance. Specifically, elastic net increased the R2 value from 5% to 75% for CVr and 2% to 139% for CVh, whereas the stacking ensemble increased the R2 value from 4% to 70% for CVr and 4% to 150% for CVh. Considering the best model, with the CVr scenario, good prediction accuracies were obtained for glucose (R2 = 0.81), urea (R2 = 0.73), albumin (R2 = 0.75), total reactive oxygen metabolites (R2 = 0.79), total thiol groups (R2 = 0.76), ceruloplasmin (R2 = 0.74), total proteins (R2 = 0.81), globulins (R2 = 0.87), and Na (R2 = 0.72). Good prediction accuracy in classifying extreme values was achieved for glucose (Q25 = 70.8%, Q75 = 69.9%), albumin (Q25 = 72.3%), total reactive oxygen metabolites (Q25 = 75.1%, Q75 = 74%), thiol groups (Q75 = 70.4%), total proteins (Q25 = 72.4%, Q75 = 77.2.%), globulins (Q25 = 74.8%, Q75 = 81.5%), and haptoglobin (Q75 = 74.4%). In conclusion, our study shows that FTIR spectra can be used to predict blood metabolites with relatively good accuracy, depending on trait, and are a promising tool for large-scale monitoring.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3478063
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 9
  • OpenAlex ND
social impact