316L and Cu-based inks are developed to 3D-printed tetrachiral auxetic structures. The main objectives of the work are to study the effects of powders composition and powder:binder volume ratio on rheological properties and printability of the inks. Following these results, customized Gcode is developed using FullControl Gcode Designer open-source software to 3D print intricate tetrachiral auxetic structures. The results reported in this work show how powder composition (316L versus Cu) has less effect on the inks' rheological behavior than powder size distribution and powders:binder volume ratio. In terms of rheological parameters, the zero-shear rate viscosity mainly affects the capability of the printed ink to retain its shape after printing, while the yield stress affects the printability. The printed and sintered auxetic structures achieve the intended lattice-geometry design.

Ink Tuning for Direct Ink Writing of Planar Metallic Lattices

Biasetto L.
Conceptualization
;
Gastaldi V.
Investigation
2023

Abstract

316L and Cu-based inks are developed to 3D-printed tetrachiral auxetic structures. The main objectives of the work are to study the effects of powders composition and powder:binder volume ratio on rheological properties and printability of the inks. Following these results, customized Gcode is developed using FullControl Gcode Designer open-source software to 3D print intricate tetrachiral auxetic structures. The results reported in this work show how powder composition (316L versus Cu) has less effect on the inks' rheological behavior than powder size distribution and powders:binder volume ratio. In terms of rheological parameters, the zero-shear rate viscosity mainly affects the capability of the printed ink to retain its shape after printing, while the yield stress affects the printability. The printed and sintered auxetic structures achieve the intended lattice-geometry design.
File in questo prodotto:
File Dimensione Formato  
Adv Eng Mater - 2023 - Biasetto - Ink Tuning for Direct Ink Writing of Planar Metallic Lattices.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 5.3 MB
Formato Adobe PDF
5.3 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3479360
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact