The critical brain hypothesis states that biological neuronal networks, because of their structural and functional architecture, work near phase transitions for optimal response to internal and external inputs. Criticality thus provides optimal function and behavioral capabilities. We test this hypothesis by examining the influence of brain injury (strokes) on the criticality of neural dynamics estimated at the level of single participants using directly measured individual structural connectomes and whole-brain models. Lesions engender a sub-critical state that recovers over time in parallel with behavior. The improvement of criticality is associated with the re-modeling of specific white-matter connections. We show that personalized whole-brain dynamical models poised at criticality track neural dynamics, alteration post-stroke, and behavior at the level of single participants.The authors investigate the influence of brain injury (strokes) on the criticality of neural dynamics using directly measured connectomes and whole-brain models. They show that lesions engender a sub-critical state that recovers over time in parallel with behavior.

Recovery of neural dynamics criticality in personalized whole-brain models of stroke

Suweis, Samir;Zorzi, Marco;Corbetta, Maurizio
2022

Abstract

The critical brain hypothesis states that biological neuronal networks, because of their structural and functional architecture, work near phase transitions for optimal response to internal and external inputs. Criticality thus provides optimal function and behavioral capabilities. We test this hypothesis by examining the influence of brain injury (strokes) on the criticality of neural dynamics estimated at the level of single participants using directly measured individual structural connectomes and whole-brain models. Lesions engender a sub-critical state that recovers over time in parallel with behavior. The improvement of criticality is associated with the re-modeling of specific white-matter connections. We show that personalized whole-brain dynamical models poised at criticality track neural dynamics, alteration post-stroke, and behavior at the level of single participants.The authors investigate the influence of brain injury (strokes) on the criticality of neural dynamics using directly measured connectomes and whole-brain models. They show that lesions engender a sub-critical state that recovers over time in parallel with behavior.
File in questo prodotto:
File Dimensione Formato  
41467_2022_Article_30892.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 4.04 MB
Formato Adobe PDF
4.04 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3479762
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 13
social impact