Surface plasmon resonance (SPR) is a common and useful measurement technique to perform fast and sensitive optical detection. SPR instrumentations usually comprise optical systems of mirrors and lenses which are quite expensive and impractical for point-of-care applications. In this work, we presented a novel and compact SPR device called SPECTRA, designed as a spectrophotometer add-on with a grating coupling configuration. The device is conceived as a marketable solution to perform quick SPR measurements in grating configuration without the requirement of complex instrumentation. The device can be customized either in a vertical structure to reach lower incident light angles, or in a horizontal configuration, which is suitable for SPR analysis using liquid solutions. The SPECTRA performance was evaluated through SPR measurements in typical applications. The vertical SPECTRA system was employed to detect different functionalization molecules on gold 720 nm-period grating devices. Meanwhile, the horizontal SPECTRA configuration was exploited to carry out fluid-dynamic measurements using a microfluidic cell with glycerol solutions at increasing concentrations to account for different refractive indexes. The experimental tests confirmed that the SPECTRA design is suitable for SPR measurements, demonstrating its capability to detect the presence of analytes and changes in surface properties both in static and dynamic set-ups.
SPECTRA: A Novel Compact System for Surface Plasmon Resonance Measurements
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Cretaio E.;Franchin L.;Paccagnella A.;Bonaldo S.
;
	
		
		
	
			2023
Abstract
Surface plasmon resonance (SPR) is a common and useful measurement technique to perform fast and sensitive optical detection. SPR instrumentations usually comprise optical systems of mirrors and lenses which are quite expensive and impractical for point-of-care applications. In this work, we presented a novel and compact SPR device called SPECTRA, designed as a spectrophotometer add-on with a grating coupling configuration. The device is conceived as a marketable solution to perform quick SPR measurements in grating configuration without the requirement of complex instrumentation. The device can be customized either in a vertical structure to reach lower incident light angles, or in a horizontal configuration, which is suitable for SPR analysis using liquid solutions. The SPECTRA performance was evaluated through SPR measurements in typical applications. The vertical SPECTRA system was employed to detect different functionalization molecules on gold 720 nm-period grating devices. Meanwhile, the horizontal SPECTRA configuration was exploited to carry out fluid-dynamic measurements using a microfluidic cell with glycerol solutions at increasing concentrations to account for different refractive indexes. The experimental tests confirmed that the SPECTRA design is suitable for SPR measurements, demonstrating its capability to detect the presence of analytes and changes in surface properties both in static and dynamic set-ups.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											sensors-23-04309-v2.pdf
										
																				
									
										
											 accesso aperto 
											Tipologia:
											Published (Publisher's Version of Record)
										 
									
									
									
									
										
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
									
									
										Dimensione
										2.93 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								2.93 MB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




