Knowledge about the mechanical properties of lower-limb prosthetic sockets fabricated with resin infusion lamination and composite materials is limited. Therefore, sockets can be subject to mechanical failure and overdimensioning, both of which can have severe consequences for patients. For this reason, an exploratory study was conducted to analyze the effect of stratigraphy (layup and fibers), matrix (resin) and mechanical connection (socket distal adapter) on socket static strength, with the objectives of: 1) implementing a mechanical testing system for lower-limb prosthetic sockets based on ISO 10328:2016 and provide the mechanical design of the loading plates, 2) apply the testing system to a series of laminated sockets, and 3) for each type of distal adapter, identify the combinations of stratigraphy and matrix with acceptable strength and minimum weight. Twenty-three laminated sockets were produced and tested. Sixteen met the required strength, with ten exhibiting an excessive weight. Among the remaining six, four combinations of stratigraphy and resin were identified as best option, as they all overcame ISO 10328 P6 loading level and weighted less than 600 g. The selected stratigraphies had limited or absent amount of Perlon stockinettes, which seems to increase weight without enhancing the mechanical strength. Sockets based on Ossur MSS braids and connector show the best compromise between strength and weight when the amount of carbon braids is halved.

Static strength of lower-limb prosthetic sockets: An exploratory study on the influence of stratigraphy, distal adapter and lamination resin

Gariboldi, Francesca
;
Scapinello, Mattia;Petrone, Nicola;
2023

Abstract

Knowledge about the mechanical properties of lower-limb prosthetic sockets fabricated with resin infusion lamination and composite materials is limited. Therefore, sockets can be subject to mechanical failure and overdimensioning, both of which can have severe consequences for patients. For this reason, an exploratory study was conducted to analyze the effect of stratigraphy (layup and fibers), matrix (resin) and mechanical connection (socket distal adapter) on socket static strength, with the objectives of: 1) implementing a mechanical testing system for lower-limb prosthetic sockets based on ISO 10328:2016 and provide the mechanical design of the loading plates, 2) apply the testing system to a series of laminated sockets, and 3) for each type of distal adapter, identify the combinations of stratigraphy and matrix with acceptable strength and minimum weight. Twenty-three laminated sockets were produced and tested. Sixteen met the required strength, with ten exhibiting an excessive weight. Among the remaining six, four combinations of stratigraphy and resin were identified as best option, as they all overcame ISO 10328 P6 loading level and weighted less than 600 g. The selected stratigraphies had limited or absent amount of Perlon stockinettes, which seems to increase weight without enhancing the mechanical strength. Sockets based on Ossur MSS braids and connector show the best compromise between strength and weight when the amount of carbon braids is halved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3488202
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact