Objective. Neurostimulator is one of the most important part in artificial retina design. In this paper, we discuss the main challenges in the design of application-specific integrated circuit for high-resolution artificial retina and suggest corresponding solutions. Approach. Problems in the design of the neurostimulator for the existing artificial retina have not been solved yet are analyzed and solutions are presented. For verification of the solutions, mathematical proof, MATLAB and Ansys simulations are used. Main results. The drawbacks of resorting to a high-voltage complementary metal oxide semiconductor (CMOS) process to deal with the large voltage compliance demanded by the stimulator output stage are pointed out, and an alternative approach based on a circuit that switches the voltage of the common reference electrode is proposed to overcome. The necessity of an active discharge circuit to remove the residual charge of electrodes caused by an unbalanced stimulus is investigated. We present a circuit analysis showing that the use of a passive discharge circuit is sufficient to suppress problematic direct current in most situations. Finally, possible restrictions on input and output (I/O) count are investigated by estimating the resistive-capacitive delay caused by the interconnection between the I/O pad and the microelectrode array. Significance. The results of this paper clarified the problems currently faced by neurostimulator design for the artificial retina. Through the solutions presented in this study, circuits with more competitiveness in power and area consumption can be designed.

Neurostimulators for high-resolution artificial retina: ASIC design challenges and solutions

Neviani A.
2022

Abstract

Objective. Neurostimulator is one of the most important part in artificial retina design. In this paper, we discuss the main challenges in the design of application-specific integrated circuit for high-resolution artificial retina and suggest corresponding solutions. Approach. Problems in the design of the neurostimulator for the existing artificial retina have not been solved yet are analyzed and solutions are presented. For verification of the solutions, mathematical proof, MATLAB and Ansys simulations are used. Main results. The drawbacks of resorting to a high-voltage complementary metal oxide semiconductor (CMOS) process to deal with the large voltage compliance demanded by the stimulator output stage are pointed out, and an alternative approach based on a circuit that switches the voltage of the common reference electrode is proposed to overcome. The necessity of an active discharge circuit to remove the residual charge of electrodes caused by an unbalanced stimulus is investigated. We present a circuit analysis showing that the use of a passive discharge circuit is sufficient to suppress problematic direct current in most situations. Finally, possible restrictions on input and output (I/O) count are investigated by estimating the resistive-capacitive delay caused by the interconnection between the I/O pad and the microelectrode array. Significance. The results of this paper clarified the problems currently faced by neurostimulator design for the artificial retina. Through the solutions presented in this study, circuits with more competitiveness in power and area consumption can be designed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3494433
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact