When a pure vapor condenses over a surface, it can form a continuous liquid film or a multitude of discrete droplets, thus realizing the so-called dropwise condensation (DWC). In the literature, most of the experimental data refer to DWC on vertical condensing surfaces with quiescent vapor. However, in many applications, the condensing vapor usually has a non-zero flow velocity with a consequent effect on the sliding motion of droplets. Moreover, the drag force due to vapor velocity may be the only mechanism for liquid removal on a horizontal surface or in space applications. A systematic investigation of the effects of vapor drag and surface inclination on the heat transfer and droplet population during DWC is needed and is addressed in the present paper. Here, DWC of flowing steam is experimentally studied on sol-gel silica-based coated aluminium substrates at three different inclinations: vertical, inclined at 45°, and horizontal. Heat transfer coefficient (HTC) and droplet population measurements are performed in a wide range of heat flux (260–610 kW m−2) and average vapor velocity (3.3–13.8 m s−1). When decreasing the tilt angle, from vertical to horizontal, due to the lower contribution of the gravity force, the average droplet size increases, and a strong HTC reduction is observed above all at low vapor velocities. Because of the vapor drag force, the HTC increases with steam velocity and, at the highest mass velocity, the HTC is independent from the surface inclination. A model for the droplet departing radius in the presence of vapor velocity, initially proposed by the present authors for the sole case of vertical surfaces, is here modified to account also for the effect of surface inclination and then assessed against the present experimental data. Hence, we propose to predict the heat flux during DWC by coupling the new equation for the departing radius with the available models of heat transfer through a single droplet and drop-size distribution. The developed calculation method is found to provide satisfactory predictions of the HTC for the whole range of vapor velocity, heat flux and surface inclination.

Investigation of surface inclination effect during dropwise condensation of flowing saturated steam

Tancon, Marco;Abbatecola, Antonio;Bortolin, Stefano;Colusso, Elena;Martucci, Alessandro;Del Col, Davide
2024

Abstract

When a pure vapor condenses over a surface, it can form a continuous liquid film or a multitude of discrete droplets, thus realizing the so-called dropwise condensation (DWC). In the literature, most of the experimental data refer to DWC on vertical condensing surfaces with quiescent vapor. However, in many applications, the condensing vapor usually has a non-zero flow velocity with a consequent effect on the sliding motion of droplets. Moreover, the drag force due to vapor velocity may be the only mechanism for liquid removal on a horizontal surface or in space applications. A systematic investigation of the effects of vapor drag and surface inclination on the heat transfer and droplet population during DWC is needed and is addressed in the present paper. Here, DWC of flowing steam is experimentally studied on sol-gel silica-based coated aluminium substrates at three different inclinations: vertical, inclined at 45°, and horizontal. Heat transfer coefficient (HTC) and droplet population measurements are performed in a wide range of heat flux (260–610 kW m−2) and average vapor velocity (3.3–13.8 m s−1). When decreasing the tilt angle, from vertical to horizontal, due to the lower contribution of the gravity force, the average droplet size increases, and a strong HTC reduction is observed above all at low vapor velocities. Because of the vapor drag force, the HTC increases with steam velocity and, at the highest mass velocity, the HTC is independent from the surface inclination. A model for the droplet departing radius in the presence of vapor velocity, initially proposed by the present authors for the sole case of vertical surfaces, is here modified to account also for the effect of surface inclination and then assessed against the present experimental data. Hence, we propose to predict the heat flux during DWC by coupling the new equation for the departing radius with the available models of heat transfer through a single droplet and drop-size distribution. The developed calculation method is found to provide satisfactory predictions of the HTC for the whole range of vapor velocity, heat flux and surface inclination.
File in questo prodotto:
File Dimensione Formato  
ETFS_196_2024_DWC Inclination.pdf

accesso aperto

Descrizione: ETFS_196_2024
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 5.82 MB
Formato Adobe PDF
5.82 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3500500
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact