The paper reports a machine learning approach for estimating the phase in a distributed acoustic sensor implemented using optical frequency domain reflectometry, with enhanced robustness at the fading points. A neural network configuration was trained using a simulated set of optical signals that were modeled after the Rayleigh scattering pattern of a perturbed fiber. Firstly, the performance of the network was verified using another set of numerically generated scattering profiles to compare the achieved accuracy levels with the standard homodyne detection method. Then, the proposed method was tested on real experimental measurements, which indicated a detection improvement of at least 5.1 dB with respect to the standard approach.

Machine Learning Estimation of the Phase at the Fading Points of an OFDR-Based Distributed Sensor

Aitkulov, Arman;Chiuso, Alessandro;Palmieri, Luca;Galtarossa, Andrea
2022

Abstract

The paper reports a machine learning approach for estimating the phase in a distributed acoustic sensor implemented using optical frequency domain reflectometry, with enhanced robustness at the fading points. A neural network configuration was trained using a simulated set of optical signals that were modeled after the Rayleigh scattering pattern of a perturbed fiber. Firstly, the performance of the network was verified using another set of numerically generated scattering profiles to compare the achieved accuracy levels with the standard homodyne detection method. Then, the proposed method was tested on real experimental measurements, which indicated a detection improvement of at least 5.1 dB with respect to the standard approach.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3501754
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact