Future Large Scale Structure surveys are expected to improve over current bounds on primordial non-Gaussianity (PNG), with a significant impact on our understanding of early Universe physics. The level of such improvements will however strongly depend on the extent to which late time non-linearities erase the PNG signal on small scales. In this work, we show how much primordial information remains in the bispectrum of the non-linear dark matter density field by implementing a new, simulation-based, methodology for joint estimation of PNG amplitudes ($f_{\rm NL}$) and standard $\Lambda$CDM parameters. The estimator is based on optimally compressed statistics, which, for a given input density field, combine power spectrum and modal bispectrum measurements, and numerically evaluate their covariance and their response to changes in cosmological parameters. We train and validate the estimator using a large suite of N-body simulations (QUIJOTE-PNG), including different types of PNG (local, equilateral, orthogonal). We explicitly test the estimator's unbiasedness, optimality and stability with respect to changes in the total number of input realizations. While the dark matter power spectrum itself contains negligible PNG information, as expected, including it as an ancillary statistic increases the PNG information content extracted from the bispectrum by a factor of order $2$. As a result, we prove the capability of our approach to optimally extract PNG information on non-linear scales beyond the perturbative regime, up to $k_{\rm max} = 0.5~h\,{\rm Mpc}^{-1}$, obtaining marginalized $1$-$\sigma$ bounds of $\Delta f_{\rm NL}^{\rm local} \sim 16$, $\Delta f_{\rm NL}^{\rm equil} \sim 77$ and $\Delta f_{\rm NL}^{\rm ortho} \sim 40$ on a cubic volume of $1~(\mathrm{Gpc}/h)^3$ at $z=1$. At the same time, we discuss the significant information on cosmological parameters contained on these scales.

Quijote-PNG: Quasi-maximum likelihood estimation of Primordial Non-Gaussianity in the non-linear dark matter density field

Gabriel Jung
;
Dionysios Karagiannis;Michele Liguori;
2022

Abstract

Future Large Scale Structure surveys are expected to improve over current bounds on primordial non-Gaussianity (PNG), with a significant impact on our understanding of early Universe physics. The level of such improvements will however strongly depend on the extent to which late time non-linearities erase the PNG signal on small scales. In this work, we show how much primordial information remains in the bispectrum of the non-linear dark matter density field by implementing a new, simulation-based, methodology for joint estimation of PNG amplitudes ($f_{\rm NL}$) and standard $\Lambda$CDM parameters. The estimator is based on optimally compressed statistics, which, for a given input density field, combine power spectrum and modal bispectrum measurements, and numerically evaluate their covariance and their response to changes in cosmological parameters. We train and validate the estimator using a large suite of N-body simulations (QUIJOTE-PNG), including different types of PNG (local, equilateral, orthogonal). We explicitly test the estimator's unbiasedness, optimality and stability with respect to changes in the total number of input realizations. While the dark matter power spectrum itself contains negligible PNG information, as expected, including it as an ancillary statistic increases the PNG information content extracted from the bispectrum by a factor of order $2$. As a result, we prove the capability of our approach to optimally extract PNG information on non-linear scales beyond the perturbative regime, up to $k_{\rm max} = 0.5~h\,{\rm Mpc}^{-1}$, obtaining marginalized $1$-$\sigma$ bounds of $\Delta f_{\rm NL}^{\rm local} \sim 16$, $\Delta f_{\rm NL}^{\rm equil} \sim 77$ and $\Delta f_{\rm NL}^{\rm ortho} \sim 40$ on a cubic volume of $1~(\mathrm{Gpc}/h)^3$ at $z=1$. At the same time, we discuss the significant information on cosmological parameters contained on these scales.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3507009
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact