BackgroundThere is increasing evidence from human and animal studies that cortical spreading depression (CSD) is the neurophysiological correlate of migraine aura and a trigger of migraine pain mechanisms. The mechanisms of initiation of CSD in the brain of migraineurs remain unknown, and the mechanisms of initiation of experimentally induced CSD in normally metabolizing brain tissue remain incompletely understood and controversial. Here, we investigated the mechanisms of CSD initiation by focal application of KCl in mouse cerebral cortex slices.MethodsHigh KCl puffs of increasing duration up to the threshold duration eliciting a CSD were applied on layer 2/3 whilst the membrane potential of a pyramidal neuron located very close to the site of KCl application and the intrinsic optic signal were simultaneously recorded. This was done before and after the application of a specific blocker of either NMDA or AMPA glutamate receptors (NMDARs, AMPARs) or voltage-gated Ca2+ (Ca-V) channels. If the drug blocked CSD, stimuli up to 12-15 times the threshold were applied.ResultsBlocking either NMDARs with MK-801 or Ca-V channels with Ni2+ completely inhibited CSD initiation by both CSD threshold and largely suprathreshold KCl stimuli. Inhibiting AMPARs with NBQX was without effect on the CSD threshold and velocity. Analysis of the CSD subthreshold and threshold neuronal depolarizations in control conditions and in the presence of MK-801 or Ni2+ revealed that the mechanism underlying ignition of CSD by a threshold stimulus (and not by a just subthreshold stimulus) is the Ca-V-dependent activation of a threshold level of NMDARs (and/or of channels whose opening depends on the latter). The delay of several seconds with which this occurs underlies the delay of CSD initiation relative to the rapid neuronal depolarization produced by KCl.ConclusionsBoth NMDARs and Ca-V channels are necessary for CSD initiation, which is not determined by the extracellular K+ or neuronal depolarization levels per se, but requires the Ca-V-dependent activation of a threshold level of NMDARs. This occurs with a delay of several seconds relative to the rapid depolarization produced by the KCl stimulus. Our data give insights into potential mechanisms of CSD initiation in migraine.

Mechanisms of initiation of cortical spreading depression

Vitale, Marina;Tottene, Angelita;Pietrobon, Daniela
2023

Abstract

BackgroundThere is increasing evidence from human and animal studies that cortical spreading depression (CSD) is the neurophysiological correlate of migraine aura and a trigger of migraine pain mechanisms. The mechanisms of initiation of CSD in the brain of migraineurs remain unknown, and the mechanisms of initiation of experimentally induced CSD in normally metabolizing brain tissue remain incompletely understood and controversial. Here, we investigated the mechanisms of CSD initiation by focal application of KCl in mouse cerebral cortex slices.MethodsHigh KCl puffs of increasing duration up to the threshold duration eliciting a CSD were applied on layer 2/3 whilst the membrane potential of a pyramidal neuron located very close to the site of KCl application and the intrinsic optic signal were simultaneously recorded. This was done before and after the application of a specific blocker of either NMDA or AMPA glutamate receptors (NMDARs, AMPARs) or voltage-gated Ca2+ (Ca-V) channels. If the drug blocked CSD, stimuli up to 12-15 times the threshold were applied.ResultsBlocking either NMDARs with MK-801 or Ca-V channels with Ni2+ completely inhibited CSD initiation by both CSD threshold and largely suprathreshold KCl stimuli. Inhibiting AMPARs with NBQX was without effect on the CSD threshold and velocity. Analysis of the CSD subthreshold and threshold neuronal depolarizations in control conditions and in the presence of MK-801 or Ni2+ revealed that the mechanism underlying ignition of CSD by a threshold stimulus (and not by a just subthreshold stimulus) is the Ca-V-dependent activation of a threshold level of NMDARs (and/or of channels whose opening depends on the latter). The delay of several seconds with which this occurs underlies the delay of CSD initiation relative to the rapid neuronal depolarization produced by KCl.ConclusionsBoth NMDARs and Ca-V channels are necessary for CSD initiation, which is not determined by the extracellular K+ or neuronal depolarization levels per se, but requires the Ca-V-dependent activation of a threshold level of NMDARs. This occurs with a delay of several seconds relative to the rapid depolarization produced by the KCl stimulus. Our data give insights into potential mechanisms of CSD initiation in migraine.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3507735
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact