In statistical process control, accurately estimating in-control (IC) parameters is crucial for effective monitoring. This typically requires a Phase I analysis to obtain estimates before monitoring commences. The traditional "fixed" estimate (FE) approach uses these estimates exclusively, while the "adaptive" estimate (AE) approach updates the estimates with each new observation. Such extreme criteria reflect the traditional bias-variance tradeoff in the framework of the sequential parameter learning schemes. This paper proposes an intermediate update rule that generalizes two ad hoc criteria for monitoring univariate Gaussian data, by giving a lower probability to parameter updates when an out-of-control (OC) situation is likely, therefore updating more frequently when there is no evidence of an OC scenario. The simulation study shows that this approach improves the detection power for small and early shifts, which are commonly regarded as a weakness of control charts based on fully online adaptive estimation. The paper also shows that the proposed method performs similarly to the fully adaptive procedure for larger or later shifts. The proposed method is illustrated by monitoring the sudden increase in ICU counts during the 2020 COVID outbreak in New York.

Alternative parameter learning schemes for monitoring process stability

Zago, D
;
Capizzi, G
2023

Abstract

In statistical process control, accurately estimating in-control (IC) parameters is crucial for effective monitoring. This typically requires a Phase I analysis to obtain estimates before monitoring commences. The traditional "fixed" estimate (FE) approach uses these estimates exclusively, while the "adaptive" estimate (AE) approach updates the estimates with each new observation. Such extreme criteria reflect the traditional bias-variance tradeoff in the framework of the sequential parameter learning schemes. This paper proposes an intermediate update rule that generalizes two ad hoc criteria for monitoring univariate Gaussian data, by giving a lower probability to parameter updates when an out-of-control (OC) situation is likely, therefore updating more frequently when there is no evidence of an OC scenario. The simulation study shows that this approach improves the detection power for small and early shifts, which are commonly regarded as a weakness of control charts based on fully online adaptive estimation. The paper also shows that the proposed method performs similarly to the fully adaptive procedure for larger or later shifts. The proposed method is illustrated by monitoring the sudden increase in ICU counts during the 2020 COVID outbreak in New York.
File in questo prodotto:
File Dimensione Formato  
lqen_a_2253891_sm9914.pdf

accesso aperto

Descrizione: Supplemental material
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 21.19 MB
Formato Adobe PDF
21.19 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3508169
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact