We prove a Künneth-type equivalence of derived categories of lisse and constructible Weil sheaves on schemes in characteristic p > 0 for various coefficients, including finite discrete rings, algebraic field extensions E ⊃ ℚℓ, ℓ ≠ p, and their rings of integers OE. We also consider a variant for ind-constructible sheaves which applies to the cohomology of moduli stacks of shtukas over global function fields.

A categorical Künneth formula for constructible Weil sheaves

Jakob Scholbach
2024

Abstract

We prove a Künneth-type equivalence of derived categories of lisse and constructible Weil sheaves on schemes in characteristic p > 0 for various coefficients, including finite discrete rings, algebraic field extensions E ⊃ ℚℓ, ℓ ≠ p, and their rings of integers OE. We also consider a variant for ind-constructible sheaves which applies to the cohomology of moduli stacks of shtukas over global function fields.
File in questo prodotto:
File Dimensione Formato  
ant-v18-n3-p03-s.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 1.53 MB
Formato Adobe PDF
1.53 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3508929
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact