A Fe3+-ion cross-linked carboxymethyl cellulose, Fe3+-CMC, redox-active gel exhibiting dissipative, transient stiffness properties is introduced. Chemical or photosensitized reduction of the higher-stiffness Fe3+-CMC to the lower-stiffness Fe2+-CMC gel, accompanied by the aerobic reoxidation of the Fe2+-CMC matrix, leads to the dissipative, transient stiffness, functional matrix. The light-induced, temporal, transient release of a load (Texas red dextran) and the light-triggered, transient mechanical bending of a poly-N-isopropylacrylamide (p-NIPAM)/Fe3+-CMC bilayer construct are introduced, thus demonstrating the potential use of the dissipative Fe3+-CMC gel for controlled drug release or soft robotic applications.

Chemical and Photochemical-Driven Dissipative Fe3+/Fe2+-Ion Cross-Linked Carboxymethyl Cellulose Gels Operating Under Aerobic Conditions: Applications for Transient Controlled Release and Mechanical Actuation

Baretta R.;Frasconi M.
;
2024

Abstract

A Fe3+-ion cross-linked carboxymethyl cellulose, Fe3+-CMC, redox-active gel exhibiting dissipative, transient stiffness properties is introduced. Chemical or photosensitized reduction of the higher-stiffness Fe3+-CMC to the lower-stiffness Fe2+-CMC gel, accompanied by the aerobic reoxidation of the Fe2+-CMC matrix, leads to the dissipative, transient stiffness, functional matrix. The light-induced, temporal, transient release of a load (Texas red dextran) and the light-triggered, transient mechanical bending of a poly-N-isopropylacrylamide (p-NIPAM)/Fe3+-CMC bilayer construct are introduced, thus demonstrating the potential use of the dissipative Fe3+-CMC gel for controlled drug release or soft robotic applications.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3513250
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact