In recent years, increased control over naturally derived structural protein formulations and their self-assembly has enabled the application of high-resolution manufacturing techniques to silk-based materials, leading to bioactive interfaces with unprecedented miniaturized formats and functionalities. Here, a hybrid biopolymer-semiconductor device, obtained by integrating nanoscale silk layers in a well-established class of inorganic field-effect transistors (silk-FETs), is presented. The devices offer two distinct modes of operation-either traditional field-effect or electrolyte-gated-enabled by the precisely controlled thickness, morphology, and biochemistry of the integrated silk layers. The different operational modes are selectively accessed by dynamically modulating the free-water content within the nanoscale protein layer from the vapor phase. The utility of these hybrid devices is illustrated in a highly sensitive and ultrafast breath sensor, highlighting the opportunities offered by the integration of nanoscale biomaterial interfaces in conjunction with traditional semiconductor devices, enabling functional outcomes at the intersection between the worlds of microelectronics and biology.The ability to control the deposition of nanoscale layers of silk on semiconductors allows transistors that can controllably operate either in the ionic or dielectric regime to be built. These devices can be produced at scale and allow for a class of hybrid, (bio)functional devices where semiconductors and natural materials coexist, reducing the gap between biology and technology even further.image

Bimodal Gating Mechanism in Hybrid Thin‐Film Transistors Based on Dynamically Reconfigurable Nanoscale Biopolymer Interfaces

Bonacchini, Giorgio Ernesto;
2023

Abstract

In recent years, increased control over naturally derived structural protein formulations and their self-assembly has enabled the application of high-resolution manufacturing techniques to silk-based materials, leading to bioactive interfaces with unprecedented miniaturized formats and functionalities. Here, a hybrid biopolymer-semiconductor device, obtained by integrating nanoscale silk layers in a well-established class of inorganic field-effect transistors (silk-FETs), is presented. The devices offer two distinct modes of operation-either traditional field-effect or electrolyte-gated-enabled by the precisely controlled thickness, morphology, and biochemistry of the integrated silk layers. The different operational modes are selectively accessed by dynamically modulating the free-water content within the nanoscale protein layer from the vapor phase. The utility of these hybrid devices is illustrated in a highly sensitive and ultrafast breath sensor, highlighting the opportunities offered by the integration of nanoscale biomaterial interfaces in conjunction with traditional semiconductor devices, enabling functional outcomes at the intersection between the worlds of microelectronics and biology.The ability to control the deposition of nanoscale layers of silk on semiconductors allows transistors that can controllably operate either in the ionic or dielectric regime to be built. These devices can be produced at scale and allow for a class of hybrid, (bio)functional devices where semiconductors and natural materials coexist, reducing the gap between biology and technology even further.image
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3513926
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact