Vehicle sideslip angle, defined as the angle between the longitudinal axis of a vehicle and its velocity vector, is a crucial parameter in vehicle dynamics. Unfortunately vehicle sideslip angle is very hard to access directly, therefore a variety of estimation methods have been developed so far. Such estimation methods are essentially based on model-based approaches or neural networks. This paper looks at the problem from a fresh angle, by investigating possible solutions to measure vehicle sideslip angle via computer vision techniques, harnessing recent improvements in computer vision algorithms. Preliminary experiments on a radio-controlled scaled vehicle show promising results using the "phase correlation"algorithm.
Computer vision approaches for vehicle sideslip angle estimation
Lenzo B.;Bruschetta M.;
2023
Abstract
Vehicle sideslip angle, defined as the angle between the longitudinal axis of a vehicle and its velocity vector, is a crucial parameter in vehicle dynamics. Unfortunately vehicle sideslip angle is very hard to access directly, therefore a variety of estimation methods have been developed so far. Such estimation methods are essentially based on model-based approaches or neural networks. This paper looks at the problem from a fresh angle, by investigating possible solutions to measure vehicle sideslip angle via computer vision techniques, harnessing recent improvements in computer vision algorithms. Preliminary experiments on a radio-controlled scaled vehicle show promising results using the "phase correlation"algorithm.File | Dimensione | Formato | |
---|---|---|---|
Serena2023computer.pdf
accesso aperto
Tipologia:
Preprint (submitted version)
Licenza:
Creative commons
Dimensione
820.89 kB
Formato
Adobe PDF
|
820.89 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.