Digital photogrammetry has attracted widespread attention in the field of geotechnical and geological surveys due to its low-cost, ease of use, and contactless mode. In this work, with the purpose of studying the progressive block surficial detachments of a landslide, we developed a monitoring system based on fixed multi-view time-lapse cameras. Thanks to a newly developed photogrammetric algorithm based on the comparison of photo sequences through a structural similarity metric and the computation of the disparity map of two convergent views, we can quickly detect the occurrence of collapse events, determine their location, and calculate the collapse volume. With the field data obtained at the Perarolo landslide site (Belluno Province, Italy), we conducted preliminary tests of the effectiveness of the algorithm and its accuracy in the volume calculation. The method of quickly and automatically obtaining the collapse information proposed in this paper can extend the potential of landslide monitoring systems based on videos or photo sequence and it will be of great significance for further research on the link between the frequency of collapse events and the driving factors.
Automated Photogrammetric Tool for Landslide Recognition and Volume Calculation Using Time-Lapse Imagery
Gabrieli, Fabio;Pol, Antonio;Brezzi, Lorenzo
2024
Abstract
Digital photogrammetry has attracted widespread attention in the field of geotechnical and geological surveys due to its low-cost, ease of use, and contactless mode. In this work, with the purpose of studying the progressive block surficial detachments of a landslide, we developed a monitoring system based on fixed multi-view time-lapse cameras. Thanks to a newly developed photogrammetric algorithm based on the comparison of photo sequences through a structural similarity metric and the computation of the disparity map of two convergent views, we can quickly detect the occurrence of collapse events, determine their location, and calculate the collapse volume. With the field data obtained at the Perarolo landslide site (Belluno Province, Italy), we conducted preliminary tests of the effectiveness of the algorithm and its accuracy in the volume calculation. The method of quickly and automatically obtaining the collapse information proposed in this paper can extend the potential of landslide monitoring systems based on videos or photo sequence and it will be of great significance for further research on the link between the frequency of collapse events and the driving factors.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.