The energy released during an earthquake is mostly dissipated in the fault zone and subordinately as radiated seismic waves. The on-fault energy budget is partitioned into frictional heat, generation of new grain surface by microfracturing, and crystal-lattice distortion associated with dislocation defects. The relative contribution of these components is debated and difficult to assess, but this energy partitioning strongly influences earthquake mechanics. We use high-resolution scanning-electron-microscopy techniques, especially to analyze shocked garnet in a fault wall-rock, to provide the first estimate of all three energy components for a seismic fault patch exhumed from midcrustal conditions. Fault single-jerk seismicity is recorded by the presence of pristine quenched frictional melt. The estimated value of energy per unit fault surface is similar to 13 megajoules per square meter for heat, which is predominant with respect to both surface energy (up to 0.29 megajoules per square meter) and energy associated with crystal lattice distortion (0.02 megajoules per square meter).

On-fault earthquake energy density partitioning from shocked garnet in an exhumed seismic midcrustal fault

Toffol, Giovanni
;
Pennacchioni, Giorgio;Menegon, Luca;Faccenda, Manuele;
2024

Abstract

The energy released during an earthquake is mostly dissipated in the fault zone and subordinately as radiated seismic waves. The on-fault energy budget is partitioned into frictional heat, generation of new grain surface by microfracturing, and crystal-lattice distortion associated with dislocation defects. The relative contribution of these components is debated and difficult to assess, but this energy partitioning strongly influences earthquake mechanics. We use high-resolution scanning-electron-microscopy techniques, especially to analyze shocked garnet in a fault wall-rock, to provide the first estimate of all three energy components for a seismic fault patch exhumed from midcrustal conditions. Fault single-jerk seismicity is recorded by the presence of pristine quenched frictional melt. The estimated value of energy per unit fault surface is similar to 13 megajoules per square meter for heat, which is predominant with respect to both surface energy (up to 0.29 megajoules per square meter) and energy associated with crystal lattice distortion (0.02 megajoules per square meter).
2024
File in questo prodotto:
File Dimensione Formato  
2024_Toffol_etal2024SciAdv10_adi8533(On-fault earthquake energy density partitioning from shocked garnet in an exhumed seismic midcrustal fault).pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 4.48 MB
Formato Adobe PDF
4.48 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3530541
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact