The semi-hydrogenation of acetylene in ethylene-rich gas streams is a high-priority industrial chemical reaction for producing polymer-grade ethylene. Traditional thermocatalytic routes for acetylene reduction to ethylene, despite progress, still require high temperatures and high H2 consumption, possess relatively low selectivity, and use a noble metal catalyst. Light-powered strategies are starting to emerge, given that they have the potential to use directly the abundant and sustainable solar irradiation, but are ineffective. Here an efficient, >99.9% selective, visible-light powered, catalytic conversion of acetylene to ethylene is reported. The catalyst is a homogeneous molecular cobaloxime that operates in tandem with a photosensitizer at room temperature and bypasses the use of non-environmentally friendly and flammable H2 gas feed. The reaction proceeds through a cobalt-hydride intermediate with ≈100% conversion of acetylene under competitive (ethylene co-feed) conditions after only 50 min, and with no evolution of H2 or over-hydrogenation to ethane. The cobaloxime is further incorporated as a linker in a metal–organic framework; the result is a heterogeneous catalyst for the conversion of acetylene under competitive (ethylene co-feed) conditions that can be recycled up to six times and remains catalytically active for 48 h, before significant loss of performance is observed.
Photocatalytic Semi-Hydrogenation of Acetylene to Polymer-Grade Ethylene with Molecular and Metal–Organic Framework Cobaloximes
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Fortunato A.;Wang X.;Arcudi F.
;Dordevic L.
	
		
		
	
			2024
Abstract
The semi-hydrogenation of acetylene in ethylene-rich gas streams is a high-priority industrial chemical reaction for producing polymer-grade ethylene. Traditional thermocatalytic routes for acetylene reduction to ethylene, despite progress, still require high temperatures and high H2 consumption, possess relatively low selectivity, and use a noble metal catalyst. Light-powered strategies are starting to emerge, given that they have the potential to use directly the abundant and sustainable solar irradiation, but are ineffective. Here an efficient, >99.9% selective, visible-light powered, catalytic conversion of acetylene to ethylene is reported. The catalyst is a homogeneous molecular cobaloxime that operates in tandem with a photosensitizer at room temperature and bypasses the use of non-environmentally friendly and flammable H2 gas feed. The reaction proceeds through a cobalt-hydride intermediate with ≈100% conversion of acetylene under competitive (ethylene co-feed) conditions after only 50 min, and with no evolution of H2 or over-hydrogenation to ethane. The cobaloxime is further incorporated as a linker in a metal–organic framework; the result is a heterogeneous catalyst for the conversion of acetylene under competitive (ethylene co-feed) conditions that can be recycled up to six times and remains catalytically active for 48 h, before significant loss of performance is observed.| File | Dimensione | Formato | |
|---|---|---|---|
| Advanced Materials - 2024 - Stone - Photocatalytic Semi‐Hydrogenation of Acetylene to Polymer‐Grade Ethylene with Molecular.pdf accesso aperto 
											Tipologia:
											Published (Publisher's Version of Record)
										 
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
										Dimensione
										3.5 MB
									 
										Formato
										Adobe PDF
									 | 3.5 MB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




