Zirconium carbide (ZrC) has potential to be applied in next-generation nuclear reactors for space missions and industrial applications. The mechanisms controlling ZrC oxidation dependence on temperature, material composition, pressure, porosity are not fully understood. In this work, we use a peridynamic modeling of diffusion/reaction across several regions observed in previous experiments to explain the oxygen diffusion mechanism and reaction kinetics. We emphasize the importance in the oxidation and damage process of a transition layer of partially-oxidized ZrC. The peridynamic model has an autonomously moving oxidation interface, and the delamination/detachment of oxide (induced by large volumetric expansion) is simulated here with an oxygen concentration-driven damage model. Once the diffusion properties are calibrated to match the measured oxygen concentration across the oxidation front, the speed of propagation of the oxidation front is predicted by a 1D peridynamic model in excellent agreement with experimental observations. An extension to 2D finds the shape of remaining unoxidized ZrC conforming to experimental observations.

A peridynamic model for oxidation and damage in zirconium carbide ceramics

Scabbia F.
;
Zaccariotto M.;Galvanetto U.;
2025

Abstract

Zirconium carbide (ZrC) has potential to be applied in next-generation nuclear reactors for space missions and industrial applications. The mechanisms controlling ZrC oxidation dependence on temperature, material composition, pressure, porosity are not fully understood. In this work, we use a peridynamic modeling of diffusion/reaction across several regions observed in previous experiments to explain the oxygen diffusion mechanism and reaction kinetics. We emphasize the importance in the oxidation and damage process of a transition layer of partially-oxidized ZrC. The peridynamic model has an autonomously moving oxidation interface, and the delamination/detachment of oxide (induced by large volumetric expansion) is simulated here with an oxygen concentration-driven damage model. Once the diffusion properties are calibrated to match the measured oxygen concentration across the oxidation front, the speed of propagation of the oxidation front is predicted by a 1D peridynamic model in excellent agreement with experimental observations. An extension to 2D finds the shape of remaining unoxidized ZrC conforming to experimental observations.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0017931024012432-main.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 2.45 MB
Formato Adobe PDF
2.45 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3542283
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact