Advancements in neural network approaches have enhanced the effectiveness of surface Electromyography (sEMG)-based hand gesture recognition when measuring muscle activity. However, current deep learning architectures struggle to achieve good generalization and robustness, often demanding significant computational resources. The goal of this paper was to develop a robust model that can quickly adapt to new users using Transfer Learning. We propose a Multi-Scale Convolutional Neural Network (MSCNN), pre-trained with various strategies to improve inter-subject generalization. These strategies include domain adaptation with a gradient-reversal layer and self-supervision using triplet margin loss. We evaluated these approaches on several benchmark datasets, specifically the NinaPro databases. This study also compared two different Transfer Learning frameworks designed for user-dependent fine-tuning. The second Transfer Learning framework achieved a 97% F1 Score across 14 classes with an average of 1.40 epochs, suggesting potential for on-site model retraining in cases of performance degradation over time. The findings highlight the effectiveness of Transfer Learning in creating adaptive, user-specific models for sEMG-based prosthetic hands. Moreover, the study examined the impacts of rectification and window length, with a focus on real-time accessible normalizing techniques, suggesting significant improvements in usability and performance.
A Multi-Scale CNN for Transfer Learning in sEMG-Based Hand Gesture Recognition for Prosthetic Devices
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Atzori M.
;Tiengo C.;Bassetto F.
	
		
		
	
			2024
Abstract
Advancements in neural network approaches have enhanced the effectiveness of surface Electromyography (sEMG)-based hand gesture recognition when measuring muscle activity. However, current deep learning architectures struggle to achieve good generalization and robustness, often demanding significant computational resources. The goal of this paper was to develop a robust model that can quickly adapt to new users using Transfer Learning. We propose a Multi-Scale Convolutional Neural Network (MSCNN), pre-trained with various strategies to improve inter-subject generalization. These strategies include domain adaptation with a gradient-reversal layer and self-supervision using triplet margin loss. We evaluated these approaches on several benchmark datasets, specifically the NinaPro databases. This study also compared two different Transfer Learning frameworks designed for user-dependent fine-tuning. The second Transfer Learning framework achieved a 97% F1 Score across 14 classes with an average of 1.40 epochs, suggesting potential for on-site model retraining in cases of performance degradation over time. The findings highlight the effectiveness of Transfer Learning in creating adaptive, user-specific models for sEMG-based prosthetic hands. Moreover, the study examined the impacts of rectification and window length, with a focus on real-time accessible normalizing techniques, suggesting significant improvements in usability and performance.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											sensors-24-07147.pdf
										
																				
									
										
											 accesso aperto 
											Tipologia:
											Published (Publisher's Version of Record)
										 
									
									
									
									
										
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
									
									
										Dimensione
										1.47 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								1.47 MB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




