Motivation Structured tandem repeat proteins (STRPs) are characterized by preserved structural motifs arranged in a modular way. The structural and functional diversity of STRPs makes them particularly important for studying evolution and novel structure-function relationships, and ultimately for designing new synthetic proteins with specific functions. One crucial aspect of their classification is the estimation of geometrical parameters, which can provide better insight into their properties and the relationship between the spatial arrangement of repeated units and protein function. Calculating geometric descriptors for STRPs is challenging because naturally occurring repeats are not "perfect"and often contain insertions and deletions. Existing tools for predicting structural symmetry work well on simple cases but often fail for most natural proteins. Results Here, we present GeomeTRe, an algorithm that calculates geometrical descriptors such as curvature (yaw), twist (roll), and pitch for a protein structure with known repeat unit positions. The algorithm simulates the movement of consecutive units, identifies rotational axes, and calculates the corresponding Tait-Bryan angles. GeomeTRe's parameters can enhance STRP annotation and classification by identifying variations in geometric arrangements among different functional groups. The package is fast and suitable for processing large protein structure datasets when repeat region information (e.g. from RepeatsDB) is available.

GeomeTRe: accurate calculation of geometrical descriptors of tandem repeat proteins

Osmanli, Zarifa;Monzon, Alexander Miguel;Tosatto, Silvio C E;Piovesan, Damiano
2025

Abstract

Motivation Structured tandem repeat proteins (STRPs) are characterized by preserved structural motifs arranged in a modular way. The structural and functional diversity of STRPs makes them particularly important for studying evolution and novel structure-function relationships, and ultimately for designing new synthetic proteins with specific functions. One crucial aspect of their classification is the estimation of geometrical parameters, which can provide better insight into their properties and the relationship between the spatial arrangement of repeated units and protein function. Calculating geometric descriptors for STRPs is challenging because naturally occurring repeats are not "perfect"and often contain insertions and deletions. Existing tools for predicting structural symmetry work well on simple cases but often fail for most natural proteins. Results Here, we present GeomeTRe, an algorithm that calculates geometrical descriptors such as curvature (yaw), twist (roll), and pitch for a protein structure with known repeat unit positions. The algorithm simulates the movement of consecutive units, identifies rotational axes, and calculates the corresponding Tait-Bryan angles. GeomeTRe's parameters can enhance STRP annotation and classification by identifying variations in geometric arrangements among different functional groups. The package is fast and suitable for processing large protein structure datasets when repeat region information (e.g. from RepeatsDB) is available.
2025
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3560038
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact