Around 1 billion tons of agricultural by-products (ABP) are generated globally each year, posing environmental challenges, particularly in rural areas. Efficient management can transform ABP into valuable resources for energy, construction, and food packaging, aligning with circular economy principles. This research addresses a critical gap in current spatial modelling approaches for agricultural by-product (ABP) valorization by developing an integrated GIS-based framework that combines high-resolution spatial analysis with uncertainty quantification for sustainable construction material planning. A GIS-based model was applied to estimate and map the ABP in the Veneto region (Italy). Key crops—wheat, barley, sugar beet, grape, maize, and soy—were analyzed in terms of yield, spatial distribution, and biomass availability at regional, provincial, and municipal scales. Heatmaps were produced to highlight ABP hotspots and support the strategic placement of collection centers for effective by-product valorization. To estimate the potential output of ABP-based construction materials, a literature review was conducted, followed by a sensitivity analysis. Results indicate that production estimates are mainly affected by spatial and temporal variability, particularly annual yield averages per municipality and year-to-year fluctuations. The total amount of ABP estimated was around 550,000 tons per year. The annual potential production resulted in 45 million Composite Panels, and over 195 million adobe bricks. If fully utilized, ABP could satisfy 5.5 % of Veneto's adobe brick demand, contribute 14.6 % to national EPS panel production, and cover over 1 % of the green concrete region's yearly needs. These data serve as preliminary information for the sustainable placement of transformation centers and provide insights into the environmental impact of logistics and the supply phase.

From agricultural by-products to building materials: A spatial modelling approach to foster green construction sector

Parlato M. C. M.;Guerrini L.
;
Perbellini A.;Pezzuolo A.
2025

Abstract

Around 1 billion tons of agricultural by-products (ABP) are generated globally each year, posing environmental challenges, particularly in rural areas. Efficient management can transform ABP into valuable resources for energy, construction, and food packaging, aligning with circular economy principles. This research addresses a critical gap in current spatial modelling approaches for agricultural by-product (ABP) valorization by developing an integrated GIS-based framework that combines high-resolution spatial analysis with uncertainty quantification for sustainable construction material planning. A GIS-based model was applied to estimate and map the ABP in the Veneto region (Italy). Key crops—wheat, barley, sugar beet, grape, maize, and soy—were analyzed in terms of yield, spatial distribution, and biomass availability at regional, provincial, and municipal scales. Heatmaps were produced to highlight ABP hotspots and support the strategic placement of collection centers for effective by-product valorization. To estimate the potential output of ABP-based construction materials, a literature review was conducted, followed by a sensitivity analysis. Results indicate that production estimates are mainly affected by spatial and temporal variability, particularly annual yield averages per municipality and year-to-year fluctuations. The total amount of ABP estimated was around 550,000 tons per year. The annual potential production resulted in 45 million Composite Panels, and over 195 million adobe bricks. If fully utilized, ABP could satisfy 5.5 % of Veneto's adobe brick demand, contribute 14.6 % to national EPS panel production, and cover over 1 % of the green concrete region's yearly needs. These data serve as preliminary information for the sustainable placement of transformation centers and provide insights into the environmental impact of logistics and the supply phase.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3560048
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact