Predictive Quality of Service (PQoS) makes it possible to anticipate QoS changes, e.g., in wireless networks, and trigger appropriate countermeasures to avoid performance degradation. A promising tool for PQoS is given by Reinforcement Learning (RL), a methodology that enables the design of decision-making strategies for stochastic optimization. In this manuscript, we present PRATA, a new simulation framework to enable PRedictive QoS based on AI for Teleoperated driving Applications. PRATA consists of a modular pipeline that includes (i) an end-to-end protocol stack to simulate the 5G Radio Access Network (RAN), (ii) a tool for generating automotive data, and (iii) an Artificial Intelligence (AI) unit to optimize PQoS decisions. To prove its utility, we use PRATA to design an RL unit, named RAN-AI, to optimize the segmentation level of teleoperated driving data in the event of resource saturation or channel degradation. Hence, we show that the RAN-AI entity efficiently balances the trade-off between QoS and Quality of Experience (QoE) that characterize teleoperated driving applications, almost doubling the system performance compared to baseline approaches. In addition, by varying the learning settings of the RAN-AI entity, we investigate the impact of the state space and the relative cost of acquiring network data that are necessary for the implementation of RL.
PRATA: A Framework to Enable Predictive QoS in Vehicular Networks via Artificial Intelligence
Mason, Federico;Zugno, Tommaso;Drago, Matteo;Giordani, Marco;Zorzi, Michele
2025
Abstract
Predictive Quality of Service (PQoS) makes it possible to anticipate QoS changes, e.g., in wireless networks, and trigger appropriate countermeasures to avoid performance degradation. A promising tool for PQoS is given by Reinforcement Learning (RL), a methodology that enables the design of decision-making strategies for stochastic optimization. In this manuscript, we present PRATA, a new simulation framework to enable PRedictive QoS based on AI for Teleoperated driving Applications. PRATA consists of a modular pipeline that includes (i) an end-to-end protocol stack to simulate the 5G Radio Access Network (RAN), (ii) a tool for generating automotive data, and (iii) an Artificial Intelligence (AI) unit to optimize PQoS decisions. To prove its utility, we use PRATA to design an RL unit, named RAN-AI, to optimize the segmentation level of teleoperated driving data in the event of resource saturation or channel degradation. Hence, we show that the RAN-AI entity efficiently balances the trade-off between QoS and Quality of Experience (QoE) that characterize teleoperated driving applications, almost doubling the system performance compared to baseline approaches. In addition, by varying the learning settings of the RAN-AI entity, we investigate the impact of the state space and the relative cost of acquiring network data that are necessary for the implementation of RL.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.