: The calcium ion (Ca2+) is a pivotal second messenger orchestrating diverse cellular functions, including metabolism, signaling, and apoptosis. Membrane contact sites (MCSs) are critical hubs for Ca2+ exchange, enabling rapid and localized signaling across cell compartments. Well-characterized interfaces, such as those between the endoplasmic reticulum (ER) and mitochondria and ER-plasma membrane (PM), mediate Ca2+ flux through specialized channels. Less understood, yet significant, contacts involving Golgi, lysosomes, peroxisomes, and the nucleus further expand the landscape of intracellular Ca2+ signaling. These organelles are engaged in Ca2+ homeostasis mainly through their MCS, but the molecular players and the mechanisms regulating the process of Ca2+ transfer remain incompletely elucidated. This review provides a comprehensive overview of Ca2+ signaling across diverse MCS, emphasizing understudied organelles and the need for further investigation to uncover novel therapeutic opportunities.
Ca2+ Fluxes across Membrane Contact Sites
Barazzuol, Lucia;Brini, Marisa;CALI TITO
2025
Abstract
: The calcium ion (Ca2+) is a pivotal second messenger orchestrating diverse cellular functions, including metabolism, signaling, and apoptosis. Membrane contact sites (MCSs) are critical hubs for Ca2+ exchange, enabling rapid and localized signaling across cell compartments. Well-characterized interfaces, such as those between the endoplasmic reticulum (ER) and mitochondria and ER-plasma membrane (PM), mediate Ca2+ flux through specialized channels. Less understood, yet significant, contacts involving Golgi, lysosomes, peroxisomes, and the nucleus further expand the landscape of intracellular Ca2+ signaling. These organelles are engaged in Ca2+ homeostasis mainly through their MCS, but the molecular players and the mechanisms regulating the process of Ca2+ transfer remain incompletely elucidated. This review provides a comprehensive overview of Ca2+ signaling across diverse MCS, emphasizing understudied organelles and the need for further investigation to uncover novel therapeutic opportunities.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.