A crucial task in predictive maintenance is estimating the remaining useful life of physical systems. In the last decade, deep learning has improved considerably upon traditional model-based and statistical approaches in terms of predictive performance. However, in order to optimally plan maintenance operations, it is also important to quantify the uncertainty inherent in the predictions. This issue can be addressed by turning standard frequentist neural networks into Bayesian neural networks, which are naturally capable of providing confidence intervals around the estimates. Several methods exist for training those models. Researchers have focused mostly on parametric variational inference and sampling-based techniques, which notoriously suffer from limited approximation power and large computational burden, respectively. In this work, we use Stein variational gradient descent, a recently proposed algorithm for approximating intractable distributions that overcomes the drawbacks of the aforementioned techniques. In particular, we show through experimental studies on both simulated run-to-failure turbofan engine degradation data and real industrial battery degradation data that Bayesian deep learning models trained via Stein variational gradient descent consistently outperform with respect to convergence speed and predictive performance both the same models trained via parametric variational inference and their frequentist counterparts trained via backpropagation. Furthermore, we propose a method to enhance performance based on the uncertainty information provided by the Bayesian models.

Bayesian Deep Learning for Remaining Useful Life Estimation via Stein Variational Gradient Descent

Andreoli, Jacopo;Pezze, Davide Dalle
;
Susto, Gian Antonio
2025

Abstract

A crucial task in predictive maintenance is estimating the remaining useful life of physical systems. In the last decade, deep learning has improved considerably upon traditional model-based and statistical approaches in terms of predictive performance. However, in order to optimally plan maintenance operations, it is also important to quantify the uncertainty inherent in the predictions. This issue can be addressed by turning standard frequentist neural networks into Bayesian neural networks, which are naturally capable of providing confidence intervals around the estimates. Several methods exist for training those models. Researchers have focused mostly on parametric variational inference and sampling-based techniques, which notoriously suffer from limited approximation power and large computational burden, respectively. In this work, we use Stein variational gradient descent, a recently proposed algorithm for approximating intractable distributions that overcomes the drawbacks of the aforementioned techniques. In particular, we show through experimental studies on both simulated run-to-failure turbofan engine degradation data and real industrial battery degradation data that Bayesian deep learning models trained via Stein variational gradient descent consistently outperform with respect to convergence speed and predictive performance both the same models trained via parametric variational inference and their frequentist counterparts trained via backpropagation. Furthermore, we propose a method to enhance performance based on the uncertainty information provided by the Bayesian models.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3570679
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact