We used different atomic force microscopy (AFM) related techniques to analyze the electrical properties of ultrathin gate oxides irradiated with heavy ions, gathering information on the size, position, electrical properties, and number of conductive spots generated by the impinging particles. In particular, conductive-AFM (C-AFM), scanning capacitance microscopy (SCM), and Kelvin probe force microscopy (KPFM) have been used to measure at the nanoscale level the electrical conduction, capacitance, and contact potential, respectively, of fresh, irradiated, and electrically stressed MOS capacitors. The electrical properties of the different samples have been compared and the impact of the irradiation analyzed.

Using AFM related techniques for the nanoscale electrical characterization of irradiated ultrathin gate oxides

GERARDIN, SIMONE;CESTER, ANDREA;PACCAGNELLA, ALESSANDRO
2007

Abstract

We used different atomic force microscopy (AFM) related techniques to analyze the electrical properties of ultrathin gate oxides irradiated with heavy ions, gathering information on the size, position, electrical properties, and number of conductive spots generated by the impinging particles. In particular, conductive-AFM (C-AFM), scanning capacitance microscopy (SCM), and Kelvin probe force microscopy (KPFM) have been used to measure at the nanoscale level the electrical conduction, capacitance, and contact potential, respectively, of fresh, irradiated, and electrically stressed MOS capacitors. The electrical properties of the different samples have been compared and the impact of the irradiation analyzed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2430366
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
social impact