We develop a direct Lyapunov method for the almost sure open-loop stabilizability and asymptotic stabilizability of controlled degenerate diffusion processes. The infinitesimal decrease condition for a Lyapunov function is a new form of Hamilton–Jacobi–Bellman partial differential inequality of second order. We give local and global versions of the first and second Lyapunov theorems, assuming the existence of a lower semicontinuous Lyapunov function satisfying such an inequality in the viscosity sense. An explicit formula for a stabilizing feedback is provided for affine systems with smooth Lyapunov function. Several examples illustrate the theory.
Almost sure stabilizability of controlled degenerate diffusions
BARDI, MARTINO;CESARONI, ANNALISA
2005
Abstract
We develop a direct Lyapunov method for the almost sure open-loop stabilizability and asymptotic stabilizability of controlled degenerate diffusion processes. The infinitesimal decrease condition for a Lyapunov function is a new form of Hamilton–Jacobi–Bellman partial differential inequality of second order. We give local and global versions of the first and second Lyapunov theorems, assuming the existence of a lower semicontinuous Lyapunov function satisfying such an inequality in the viscosity sense. An explicit formula for a stabilizing feedback is provided for affine systems with smooth Lyapunov function. Several examples illustrate the theory.File | Dimensione | Formato | |
---|---|---|---|
BardiCesaroniSIAM05.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Accesso libero
Dimensione
236.71 kB
Formato
Adobe PDF
|
236.71 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.