The redistribution of fluorine during solid phase epitaxial regrowth (SPER) of preamorphized Si has been experimentally investigated, explained, and simulated, for different F concentrations and temperatures. We demonstrate, by a detailed analysis and modeling of F secondary ion mass spectrometry chemical-concentration profiles, that F segregates in amorphous Si during SPER by splitting in three possible states: (i) a diffusive one that migrates in amorphous Si; (ii) an interface segregated state evidenced by the presence of a F accumulation peak at the amorphous-crystal interface; (iii) a clustered F state. The interplay among these states and their roles in the F incorporation into crystalline Si are fully described. It is shown that diffusive F migrates by a trap limited diffusion mechanism and also interacts with the advancing interface by a sticking-release dynamics that regulates the amount of F segregated at the interface. We demonstrate that this last quantity determines the regrowth rate through an exponential law. On the other hand we show that neither the diffusive F nor the one segregated at the interface can directly incorporate into the crystal but F has to cluster in the amorphous phase before being incorporated in the crystal, in agreement with recent experimental observations. The trends of the model parameters as a function of the temperature are shown and discussed obtaining a clear energetic scheme of the F redistribution and incorporation in preamorphized Si. The above physical understanding and the model could have a strong impact on the use of F as a tool for optimizing the doping profiles in the fabrication of ultrashallow junctions.

Fluorine redistribution and incorporation during solid phase epitaxy of preamorphized Si

MASTROMATTEO, MASSIMO;DE SALVADOR, DAVIDE;NAPOLITANI, ENRICO;BISOGNIN, GABRIELE;CARNERA, ALBERTO;
2010

Abstract

The redistribution of fluorine during solid phase epitaxial regrowth (SPER) of preamorphized Si has been experimentally investigated, explained, and simulated, for different F concentrations and temperatures. We demonstrate, by a detailed analysis and modeling of F secondary ion mass spectrometry chemical-concentration profiles, that F segregates in amorphous Si during SPER by splitting in three possible states: (i) a diffusive one that migrates in amorphous Si; (ii) an interface segregated state evidenced by the presence of a F accumulation peak at the amorphous-crystal interface; (iii) a clustered F state. The interplay among these states and their roles in the F incorporation into crystalline Si are fully described. It is shown that diffusive F migrates by a trap limited diffusion mechanism and also interacts with the advancing interface by a sticking-release dynamics that regulates the amount of F segregated at the interface. We demonstrate that this last quantity determines the regrowth rate through an exponential law. On the other hand we show that neither the diffusive F nor the one segregated at the interface can directly incorporate into the crystal but F has to cluster in the amorphous phase before being incorporated in the crystal, in agreement with recent experimental observations. The trends of the model parameters as a function of the temperature are shown and discussed obtaining a clear energetic scheme of the F redistribution and incorporation in preamorphized Si. The above physical understanding and the model could have a strong impact on the use of F as a tool for optimizing the doping profiles in the fabrication of ultrashallow junctions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2472932
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
  • OpenAlex ND
social impact