He–Ne ring-laser gyroscopes are, at present, the most precise devices for absolute angular velocity measurements. Limitations to their performance come from the nonlinear dynamics of the laser. Following Lamb semiclassical theory, we find a set of critical parameters affecting the time stability of the system. We propose a method for estimating the long-term drift of the laser parameters and for filtering out the laser dynamics effects from the rotation measurement. The parameter estimation procedure, based on the perturbative solutions of the laser dynamics, allows us to apply Kalman filter theory for the estimation of the angular velocity. Results of a comprehensive Monte Carlo simulation and results of a preliminary analysis on experimental data from the ring-laser prototype G-Pisa are shown and discussed.

Compensation of the laser parameter fluctuations in large ring-laser gyros: a Kalman filter approach

BEGHI, ALESSANDRO;CUCCATO, DAVIDE;
2012

Abstract

He–Ne ring-laser gyroscopes are, at present, the most precise devices for absolute angular velocity measurements. Limitations to their performance come from the nonlinear dynamics of the laser. Following Lamb semiclassical theory, we find a set of critical parameters affecting the time stability of the system. We propose a method for estimating the long-term drift of the laser parameters and for filtering out the laser dynamics effects from the rotation measurement. The parameter estimation procedure, based on the perturbative solutions of the laser dynamics, allows us to apply Kalman filter theory for the estimation of the angular velocity. Results of a comprehensive Monte Carlo simulation and results of a preliminary analysis on experimental data from the ring-laser prototype G-Pisa are shown and discussed.
2012
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2531914
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 26
social impact