This paper proposes a fast and robust multi-people tracking algorithm for mobile platforms equipped with a RGB-D sensor. Our approach features an efficient point cloud depth-based clustering, an HOG-like classification to robustly initialize a person tracking and a person classifier with online learning to manage the person ID matching even after a full occlusion. For people detection, we make the assumption that people move on a ground plane. Tests are presented on a challenging real-world indoor environment and results have been evaluated with the CLEAR MOT metrics. Our algorithm proved to correctly track 96% of people with very limited ID switches and few false positives, with an average frame rate of 25 fps. Moreover, its applicability to robot-people following tasks have been tested and discussed.
Fast and Robust Multi-people Tracking from RGB-D Data for a Mobile Robot
BASSO, FILIPPO;MUNARO, MATTEO;MICHIELETTO, STEFANO;PAGELLO, ENRICO;MENEGATTI, EMANUELE
2012
Abstract
This paper proposes a fast and robust multi-people tracking algorithm for mobile platforms equipped with a RGB-D sensor. Our approach features an efficient point cloud depth-based clustering, an HOG-like classification to robustly initialize a person tracking and a person classifier with online learning to manage the person ID matching even after a full occlusion. For people detection, we make the assumption that people move on a ground plane. Tests are presented on a challenging real-world indoor environment and results have been evaluated with the CLEAR MOT metrics. Our algorithm proved to correctly track 96% of people with very limited ID switches and few false positives, with an average frame rate of 25 fps. Moreover, its applicability to robot-people following tasks have been tested and discussed.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.