Recently, we presented evidence for conventional, strand-coupled replication of mammalian mitochondrial DNA. Partially single-stranded replication intermediates detected in the same DNA preparations were assumed to derive from the previously described, strand-asymmetric mode of mitochondrial DNA replication. Here, we show that bona fide replication intermediates from highly purified mitochondria are essentially duplex throughout their length, but contain widespread regions of RNA:DNA hybrid, as a result of the incorporation of ribonucleotides on the light strand which are subsequently converted to DNA. Ribonucleotide-rich regions can be degraded to generate partially single-stranded molecules by RNase H treatment in vitro or during DNA extraction from crude mitochondria. Mammalian mitochondrial DNA replication thus proceeds mainly, or exclusively, by a strand-coupled mechanism.

Biased incorporation of ribonucleotides on the mitochondrial L-strand accounts for apparent strand-asymmetric DNA replication.

VERGANI, LODOVICA;ANGELI, PAOLO;GRINGERI, ENRICO;
2002

Abstract

Recently, we presented evidence for conventional, strand-coupled replication of mammalian mitochondrial DNA. Partially single-stranded replication intermediates detected in the same DNA preparations were assumed to derive from the previously described, strand-asymmetric mode of mitochondrial DNA replication. Here, we show that bona fide replication intermediates from highly purified mitochondria are essentially duplex throughout their length, but contain widespread regions of RNA:DNA hybrid, as a result of the incorporation of ribonucleotides on the light strand which are subsequently converted to DNA. Ribonucleotide-rich regions can be degraded to generate partially single-stranded molecules by RNase H treatment in vitro or during DNA extraction from crude mitochondria. Mammalian mitochondrial DNA replication thus proceeds mainly, or exclusively, by a strand-coupled mechanism.
2002
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2534204
Citazioni
  • ???jsp.display-item.citation.pmc??? 91
  • Scopus 217
  • ???jsp.display-item.citation.isi??? 206
  • OpenAlex ND
social impact