The corruption of floating gate bits due to high-energy protons is analyzed in 41-nm single level NAND Flash memories. Proton-induced upsets at low doses are not negligible in deeply-scaled single-level cell Flash memories, due to a combination of direct and indirect ionization effects, which may lead to threshold voltage shifts larger than 2 V. Upsets cross sections are around $10 ^{-19}~{hbox {cm}}^{2}$ , and increase with proton energy. Variability of energy deposition in the sensitive volume, the sequence of direct and indirect ionizing events, as well as the threshold voltage and electric field reduction associated with each event were included in a model of proton-induced upsets.

Proton-Induced Upsets in 41-nm NAND Floating Gate Cells

GERARDIN, SIMONE;BAGATIN, MARTA;PACCAGNELLA, ALESSANDRO;
2012

Abstract

The corruption of floating gate bits due to high-energy protons is analyzed in 41-nm single level NAND Flash memories. Proton-induced upsets at low doses are not negligible in deeply-scaled single-level cell Flash memories, due to a combination of direct and indirect ionization effects, which may lead to threshold voltage shifts larger than 2 V. Upsets cross sections are around $10 ^{-19}~{hbox {cm}}^{2}$ , and increase with proton energy. Variability of energy deposition in the sensitive volume, the sequence of direct and indirect ionizing events, as well as the threshold voltage and electric field reduction associated with each event were included in a model of proton-induced upsets.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2553683
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 10
social impact