OpenPTrack is an open source software for multi-camera calibration and people tracking in RGB-D camera networks. It allows to track people in big volumes at sensor frame rate and currently supports a heterogeneous set of 3D sensors. In this work, we describe its user-friendly calibration procedure, which consists of simple steps with real-time feedback that allow to obtain accurate results in estimating the camera poses that are then used for tracking people. On top of a calibration based on moving a checkerboard within the tracking space and on a global optimization of cameras and checkerboards poses, a novel procedure which aligns people detections coming from all sensors in a x-y-time space is used for refining camera poses. While people detection is executed locally, in the machines connected to each sensor, tracking is performed by a single node which takes into account detections from all over the network. Here we detail how a cascade of algorithms working on depth point clouds and color, infrared and disparity images is used to perform people detection from different types of sensors and in any indoor light condition. We present experiments showing that a considerable improvement can be obtained with the proposed calibration refinement procedure that exploits people detections and we compare Kinect v1, Kinect v2 and Mesa SR4500 performance for people tracking applications. OpenPTrack is based on the Robot Operating System and the Point Cloud Library and has already been adopted in networks composed of up to ten imagers for interactive arts, education, culture and human–robot interaction applications.
OpenPTrack: Open Source Multi-Camera Calibration and People Tracking for RGB-D Camera Networks
MUNARO, MATTEO;BASSO, FILIPPO;MENEGATTI, EMANUELE
2016
Abstract
OpenPTrack is an open source software for multi-camera calibration and people tracking in RGB-D camera networks. It allows to track people in big volumes at sensor frame rate and currently supports a heterogeneous set of 3D sensors. In this work, we describe its user-friendly calibration procedure, which consists of simple steps with real-time feedback that allow to obtain accurate results in estimating the camera poses that are then used for tracking people. On top of a calibration based on moving a checkerboard within the tracking space and on a global optimization of cameras and checkerboards poses, a novel procedure which aligns people detections coming from all sensors in a x-y-time space is used for refining camera poses. While people detection is executed locally, in the machines connected to each sensor, tracking is performed by a single node which takes into account detections from all over the network. Here we detail how a cascade of algorithms working on depth point clouds and color, infrared and disparity images is used to perform people detection from different types of sensors and in any indoor light condition. We present experiments showing that a considerable improvement can be obtained with the proposed calibration refinement procedure that exploits people detections and we compare Kinect v1, Kinect v2 and Mesa SR4500 performance for people tracking applications. OpenPTrack is based on the Robot Operating System and the Point Cloud Library and has already been adopted in networks composed of up to ten imagers for interactive arts, education, culture and human–robot interaction applications.File | Dimensione | Formato | |
---|---|---|---|
Munaro_PCL-RAS2015_draft.pdf
accesso aperto
Tipologia:
Preprint (submitted version)
Licenza:
Accesso libero
Dimensione
28.31 MB
Formato
Adobe PDF
|
28.31 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.