Nowadays, one of the emergent challenges in mobile robotics consists of navigating safely and efficiently in dynamic environments populated by people. This paper focuses on the robot's motion planning by proposing a learning-based method to adjust the robot's trajectories to people's movements by respecting the proxemics rules. With this purpose, we design a genetic algorithm to train the navigation stack of ROS during the goal-based navigation while the robot is disturbed by people. We also present a simulation environment based on Gazebo that extends the animated model for emulating a more natural human's walking. Preliminary results show that our approach is able to plan people-aware robot's trajectories respecting proxemics limits without worsening the performance in navigation.

Learning to plan people-aware trajectories for robot navigation: A genetic algorithm

Alberto Bacchin;Gloria Beraldo
;
Emanuele Menegatti
2021

Abstract

Nowadays, one of the emergent challenges in mobile robotics consists of navigating safely and efficiently in dynamic environments populated by people. This paper focuses on the robot's motion planning by proposing a learning-based method to adjust the robot's trajectories to people's movements by respecting the proxemics rules. With this purpose, we design a genetic algorithm to train the navigation stack of ROS during the goal-based navigation while the robot is disturbed by people. We also present a simulation environment based on Gazebo that extends the animated model for emulating a more natural human's walking. Preliminary results show that our approach is able to plan people-aware robot's trajectories respecting proxemics limits without worsening the performance in navigation.
2021
Proceedings of IEEE European Conference on Mobile Robots (EMCR)
978-166541213-1
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3402573
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact