Neuroblastoma (NB) is the most common extra-cranial malignancy in preschool children. To portray the genetic landscape of an overly aggressive NB leading to a rapid clinical progression of the disease, tumor DNA collected pre-and post-treatment has been analyzed. Array comparative genomic hybridization (aCGH), whole-exome sequencing (WES), and pharmacogenetics approaches, respectively, have identified relevant copy number alterations (CNAs), single nucleotide variants (SNVs), and polymorphisms (SNPs) that were then combined into an integrated analysis. Spontaneously formed 3D tumoroids obtained from the recurrent mass have also been characterized. The results prove the power of combining CNAs, SNVs, and SNPs analyses to assess clonal evolution during the disease progression by evidencing multiple clones at disease onset and dynamic genomic alterations during therapy administration. The proposed molecular and cytogenetic integrated analysis empowers the disease follow-up and the prediction of tumor recurrence.

Integrated cgh/wes analyses advance understanding of aggressive neuroblastoma evolution: A case study

Corallo D.;Zin A.;Francescato S.;Rossi B.;Trevisson E.;Pinato C.;Biffi A.;Aveic S.
2021

Abstract

Neuroblastoma (NB) is the most common extra-cranial malignancy in preschool children. To portray the genetic landscape of an overly aggressive NB leading to a rapid clinical progression of the disease, tumor DNA collected pre-and post-treatment has been analyzed. Array comparative genomic hybridization (aCGH), whole-exome sequencing (WES), and pharmacogenetics approaches, respectively, have identified relevant copy number alterations (CNAs), single nucleotide variants (SNVs), and polymorphisms (SNPs) that were then combined into an integrated analysis. Spontaneously formed 3D tumoroids obtained from the recurrent mass have also been characterized. The results prove the power of combining CNAs, SNVs, and SNPs analyses to assess clonal evolution during the disease progression by evidencing multiple clones at disease onset and dynamic genomic alterations during therapy administration. The proposed molecular and cytogenetic integrated analysis empowers the disease follow-up and the prediction of tumor recurrence.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11577/3412683
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact