We investigate a class of spectral multipliers for an Ornstein--Uhlenbeck operator L in R^n, with drift given by a real matrix B whose eigenvalues have negative real parts. We prove that if m is a function of Laplace transform type defined in the right half-plane, then m(L) is of weak type (1, 1) with respect to the invariant measure in R^n. The proof involves many estimates of the relevant integral kernels and also a bound for the number of zeros of the time derivative of the Mehler kernel, as well as an enhanced version of the Ornstein--Uhlenbeck maximal operator theorem.

Spectral multipliers in a general Gaussian setting

Valentina Casarino
Membro del Collaboration Group
;
Paolo Ciatti
Membro del Collaboration Group
;
Peter Sjogren
Membro del Collaboration Group
2022

Abstract

We investigate a class of spectral multipliers for an Ornstein--Uhlenbeck operator L in R^n, with drift given by a real matrix B whose eigenvalues have negative real parts. We prove that if m is a function of Laplace transform type defined in the right half-plane, then m(L) is of weak type (1, 1) with respect to the invariant measure in R^n. The proof involves many estimates of the relevant integral kernels and also a bound for the number of zeros of the time derivative of the Mehler kernel, as well as an enhanced version of the Ornstein--Uhlenbeck maximal operator theorem.
File in questo prodotto:
File Dimensione Formato  
Casarino-Ciatti-Sjogren_multipl_feb2022.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Accesso libero
Dimensione 423.08 kB
Formato Adobe PDF
423.08 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3415552
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact