The growing interest in neurorobotics has led to a proliferation of heterogeneous neurophysiological-based applications controlling a variety of robotic devices. Although recent years have seen great advances in this technology, the integration between human neural interfaces and robotics is still limited, making evident the necessity of creating a standardized research framework bridging the gap between neuroscience and robotics. This perspective paper presents Robot Operating System (ROS)-Neuro, an open-source framework for neurorobotic applications based on ROS. ROS-Neuro aims to facilitate the software distribution, the repeatability of the experimental results, and support the birth of a new community focused on neuro-driven robotics. In addition, the exploitation of Robot Operating System (ROS) infrastructure guarantees stability, reliability, and robustness, which represent fundamental aspects to enhance the translational impact of this technology. We suggest that ROS-Neuro might be the future development platform for the flourishing of a new generation of neurorobots to promote the rehabilitation, the inclusion, and the independence of people with disabilities in their everyday life.

ROS-Neuro: An Open-Source Platform for Neurorobotics

Tonin L.
;
Beraldo G.;Tortora S.;Menegatti E.
2022

Abstract

The growing interest in neurorobotics has led to a proliferation of heterogeneous neurophysiological-based applications controlling a variety of robotic devices. Although recent years have seen great advances in this technology, the integration between human neural interfaces and robotics is still limited, making evident the necessity of creating a standardized research framework bridging the gap between neuroscience and robotics. This perspective paper presents Robot Operating System (ROS)-Neuro, an open-source framework for neurorobotic applications based on ROS. ROS-Neuro aims to facilitate the software distribution, the repeatability of the experimental results, and support the birth of a new community focused on neuro-driven robotics. In addition, the exploitation of Robot Operating System (ROS) infrastructure guarantees stability, reliability, and robustness, which represent fundamental aspects to enhance the translational impact of this technology. We suggest that ROS-Neuro might be the future development platform for the flourishing of a new generation of neurorobots to promote the rehabilitation, the inclusion, and the independence of people with disabilities in their everyday life.
File in questo prodotto:
File Dimensione Formato  
fnbot-16-886050 (1).pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 2.4 MB
Formato Adobe PDF
2.4 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3452365
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
social impact