To find the most optimal green valorization process of food by-products, sugar beet (Beta vulgaris L.) leaves (SBLs) were freeze-dried and ground with/without liquid nitrogen (LN) as a simple sample pretreatment method before ultrasound-assisted extraction (UAE) of polyphenols. First, the water activity, proximate composition, amino acid (AA) and fatty acid (FA) profiles, and polyphenol oxidase (PPO) activity of dried and fresh SBLs were evaluated. Then, conventional extraction (CE) and UAE of polyphenols from SBLs using water/EtOH: water 14:6 (v/v) as extracting solvents were performed to determine the individual and combined effects of the sample preparation method and UAE. In all the freeze-dried samples, the specific activity of PPO decreased significantly (p ≤ 0.05). Freeze-drying significantly increased (p ≤ 0.05) the fiber and essential FA contents of SBLs. The FA profile of SBLs revealed that they are rich sources of oleic, linoleic, and α-linolenic acids. Although freeze-drying changed the contents of most AAs insignificantly, lysine increased significantly from 7.06 ± 0.46% to 8.32 ± 0.38%. The aqueous UAE of the freeze-dried samples without LN pretreatment yielded the most optimal total phenolic content (TPC) (69.44 ± 0.15 mg gallic acid equivalent/g dry matter (mg GAE/g DM)) and excellent antioxidant activities. Thus, combining freeze-drying with the aqueous UAE method could be proposed as a sustainable strategy for extracting bioactive compounds from food by-products.

Impact of Sample Pretreatment and Extraction Methods on the Bioactive Compounds of Sugar Beet (Beta vulgaris L.) Leaves

Peyman Ebrahimi;Luca Grigoletto;Anna Lante
2022

Abstract

To find the most optimal green valorization process of food by-products, sugar beet (Beta vulgaris L.) leaves (SBLs) were freeze-dried and ground with/without liquid nitrogen (LN) as a simple sample pretreatment method before ultrasound-assisted extraction (UAE) of polyphenols. First, the water activity, proximate composition, amino acid (AA) and fatty acid (FA) profiles, and polyphenol oxidase (PPO) activity of dried and fresh SBLs were evaluated. Then, conventional extraction (CE) and UAE of polyphenols from SBLs using water/EtOH: water 14:6 (v/v) as extracting solvents were performed to determine the individual and combined effects of the sample preparation method and UAE. In all the freeze-dried samples, the specific activity of PPO decreased significantly (p ≤ 0.05). Freeze-drying significantly increased (p ≤ 0.05) the fiber and essential FA contents of SBLs. The FA profile of SBLs revealed that they are rich sources of oleic, linoleic, and α-linolenic acids. Although freeze-drying changed the contents of most AAs insignificantly, lysine increased significantly from 7.06 ± 0.46% to 8.32 ± 0.38%. The aqueous UAE of the freeze-dried samples without LN pretreatment yielded the most optimal total phenolic content (TPC) (69.44 ± 0.15 mg gallic acid equivalent/g dry matter (mg GAE/g DM)) and excellent antioxidant activities. Thus, combining freeze-drying with the aqueous UAE method could be proposed as a sustainable strategy for extracting bioactive compounds from food by-products.
2022
File in questo prodotto:
File Dimensione Formato  
molecules-beets 2022.pdf

accesso aperto

Descrizione: Molecules beet
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.91 MB
Formato Adobe PDF
1.91 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3463382
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 3
social impact