This work addresses the problem of the loading capacity of an anchor plate coupled with a steel wire mesh in soil retaining applications. The interaction mechanism between the flexible mesh facing, the underlying soil layer and the plate is studied starting from the results of several laboratory punch tests involving both the plate and the mesh only, and the whole soil-mesh-plate system. The experimental tests have been reproduced by adopting a 3D discrete element model where also the wire mesh is discretized as an assembly of interconnected nodal particles. The interaction between these particles is ruled by elasto-plastic tensile force–displacement laws in which a distortion is introduced in a stochastic manner to account for the wires’ geometrical irregularities. The mesh model is then validated with reference to a set of punch tests in which the shape and size of the punching element as well as the nominal wire diameter were varied. Subsequently, the model is extended to a punch against soil test configuration permitting an insight into the nontrivial local mechanism between the mesh facing and the underlying granular layer. The good agreement between the numerical predictions and the experimental observations at the laboratory scale allowed us to extend the model towards more realistic field conditions for which the role of the mesh panel boundary conditions, the mesh mechanical properties, the soil mechanical properties and the anchor plate geometry is investigated.

Anchor plate bearing capacity in flexible mesh facings

Gabrieli, Fabio
2022

Abstract

This work addresses the problem of the loading capacity of an anchor plate coupled with a steel wire mesh in soil retaining applications. The interaction mechanism between the flexible mesh facing, the underlying soil layer and the plate is studied starting from the results of several laboratory punch tests involving both the plate and the mesh only, and the whole soil-mesh-plate system. The experimental tests have been reproduced by adopting a 3D discrete element model where also the wire mesh is discretized as an assembly of interconnected nodal particles. The interaction between these particles is ruled by elasto-plastic tensile force–displacement laws in which a distortion is introduced in a stochastic manner to account for the wires’ geometrical irregularities. The mesh model is then validated with reference to a set of punch tests in which the shape and size of the punching element as well as the nominal wire diameter were varied. Subsequently, the model is extended to a punch against soil test configuration permitting an insight into the nontrivial local mechanism between the mesh facing and the underlying granular layer. The good agreement between the numerical predictions and the experimental observations at the laboratory scale allowed us to extend the model towards more realistic field conditions for which the role of the mesh panel boundary conditions, the mesh mechanical properties, the soil mechanical properties and the anchor plate geometry is investigated.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0038080622001305-main.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 5.02 MB
Formato Adobe PDF
5.02 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3471383
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact