In this paper, we review and meta-analyze the findings of experimental studies published between 2006 and 2022 that examined the effects of coding and programming interventions on children's core and higher order executive functions (response inhibition, working memory, cognitive flexibility, planning and problem solving). The systematic review and meta-analysis aimed to address three research questions: 1) Which executive functions are most impacted by the teaching of CT? 2) Which instructional modality (educational robotics/virtual coding/unplugged coding) is most effective in enhancing executive function skills in learners aged 4–16 years? and 3) Does the cognitive effectiveness of coding vary with children's age? A total of 19 studies with 1523 participants met the selection criteria for the systematic review. The meta-analysis included 11 of those studies. The results reveal beneficial effects of structured virtual and tangible coding (educational robotics) activities for preschoolers and first graders, and significant effects of more unstructured virtual coding activities (e.g., Scratch-based) for older students. A multivariate fixed-effects model meta-analysis shows that the teaching of coding significantly improves problem-solving with the highest effect (dppc2 = 0.89), but also planning (dppc2 = 0.36), and inhibition and working memory with lower effects (dppc2 = 0.17, dppc2 = 0.20).

The cognitive effects of computational thinking: A systematic review and meta-analytic study

Montuori C.;Gambarota F.;Altoe G.;Arfe B.
2024

Abstract

In this paper, we review and meta-analyze the findings of experimental studies published between 2006 and 2022 that examined the effects of coding and programming interventions on children's core and higher order executive functions (response inhibition, working memory, cognitive flexibility, planning and problem solving). The systematic review and meta-analysis aimed to address three research questions: 1) Which executive functions are most impacted by the teaching of CT? 2) Which instructional modality (educational robotics/virtual coding/unplugged coding) is most effective in enhancing executive function skills in learners aged 4–16 years? and 3) Does the cognitive effectiveness of coding vary with children's age? A total of 19 studies with 1523 participants met the selection criteria for the systematic review. The meta-analysis included 11 of those studies. The results reveal beneficial effects of structured virtual and tangible coding (educational robotics) activities for preschoolers and first graders, and significant effects of more unstructured virtual coding activities (e.g., Scratch-based) for older students. A multivariate fixed-effects model meta-analysis shows that the teaching of coding significantly improves problem-solving with the highest effect (dppc2 = 0.89), but also planning (dppc2 = 0.36), and inhibition and working memory with lower effects (dppc2 = 0.17, dppc2 = 0.20).
File in questo prodotto:
File Dimensione Formato  
Montuori et al. Metanalysis_CAE 2024.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 2.32 MB
Formato Adobe PDF
2.32 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3502401
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact