This paper deals with the dynamic factor analysis problem for an ARMA process. To robustly estimate the number of factors, we construct a confidence region centered in a finite sample estimate of the underlying model which contains the true model with a prescribed probability. In this confidence region, the problem, formulated as a rank minimization of a suitable spectral density, is efficiently approximated via a trace norm convex relaxation. The latter is addressed by resorting to the Lagrange duality theory, which allows to prove the existence of solutions. Finally, a numerical algorithm to solve the dual problem is presented. The effectiveness of the proposed estimator is assessed through simulation studies both with synthetic and real data.
A Robust Approach to ARMA Factor Modeling
Falconi, Lucia;Ferrante, Augusto;Zorzi, Mattia
2024
Abstract
This paper deals with the dynamic factor analysis problem for an ARMA process. To robustly estimate the number of factors, we construct a confidence region centered in a finite sample estimate of the underlying model which contains the true model with a prescribed probability. In this confidence region, the problem, formulated as a rank minimization of a suitable spectral density, is efficiently approximated via a trace norm convex relaxation. The latter is addressed by resorting to the Lagrange duality theory, which allows to prove the existence of solutions. Finally, a numerical algorithm to solve the dual problem is presented. The effectiveness of the proposed estimator is assessed through simulation studies both with synthetic and real data.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											A_Robust_Approach_to_ARMA_Factor_Modeling.pdf
										
																				
									
										
											 accesso aperto 
											Tipologia:
											Accepted (AAM - Author's Accepted Manuscript)
										 
									
									
									
									
										
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
									
									
										Dimensione
										1.25 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								1.25 MB | Adobe PDF | Visualizza/Apri | 
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											Pubblicato.pdf
										
																				
									
										
											 accesso aperto 
											Tipologia:
											Published (Publisher's Version of Record)
										 
									
									
									
									
										
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
									
									
										Dimensione
										730.93 kB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								730.93 kB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




