We extend to incremental thermoelectroelasticity with biasing fields certain classical theorems, which have been stated and proved in linear thermopiezoelectricity referred to a natural configuration. A uniqueness theorem for the solutions to the initial boundary value problem, the generalized Hamilton principle and the theorem of reciprocity of work are deduced for incremental fields, superposed on finite biasing fields in a thermoelectroelastic body.

Some Theorems of Incremental Thermoelectroelasticity

MONTANARO, ADRIANO
2010

Abstract

We extend to incremental thermoelectroelasticity with biasing fields certain classical theorems, which have been stated and proved in linear thermopiezoelectricity referred to a natural configuration. A uniqueness theorem for the solutions to the initial boundary value problem, the generalized Hamilton principle and the theorem of reciprocity of work are deduced for incremental fields, superposed on finite biasing fields in a thermoelectroelastic body.
2010
File in questo prodotto:
File Dimensione Formato  
2010-AoM 1_SomeTheoremsIncrementalThermoelectroelasticity - Copia.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 678.17 kB
Formato Adobe PDF
678.17 kB Adobe PDF Visualizza/Apri
GENERALtheoremsBias.pdf

accesso aperto

Descrizione: Caricato da Padua@research
Tipologia: Preprint (submitted version)
Licenza: Accesso gratuito
Dimensione 174.05 kB
Formato Adobe PDF
174.05 kB Adobe PDF Visualizza/Apri
Uniq-Theorem-BIASING-FIELDS.pdf

accesso aperto

Descrizione: Caricato da Padua@research
Tipologia: Altro materiale allegato
Licenza: Accesso gratuito
Dimensione 149.94 kB
Formato Adobe PDF
149.94 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2425633
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact