ndustrial manufacturing of polyhydroxyalkanoates (PHAs) requires purification of PHAs granules from high-cell-density cultures. Cells are broken by homogenization and PHAs granules are cleansed and treated to obtain PHAs latexes. However, cell lysis releases large amounts of DNA which results in an increasing viscosity of the medium, hampering the following downstream steps. Drop in viscosity is generally achieved by costly procedures such as heat treatment or the supplementation of hypochlorite and commercially available nucleases. Searching for a cost-effective solution to this issue, a nuclease gene from Staphylococcus aureus has been integrated into two efficient PHAs-producing bacteria: Cupriavidus necator DSM 545 and Delftia acidovorans DSM 39. Staphylococcal nuclease has been proficiently expressed in both microbial hosts without affecting PHAs production. Moreover, the viscosity of the lysates of recombinant C. necator cells was greatly reduced, indicating that the engineered strain is expected to yield large reduction cost in PHAs downstream processing.

Nuclease expression in efficient polyhydroxyalkanoates-producing bacteria could yield cost reduction during downstream processing

Rodríguez Gamero, Jesús E.;Favaro, Lorenzo;Pizzocchero, Valentino;Lomolino, Giovanna;Basaglia, Marina
;
Casella, Sergio
2018

Abstract

ndustrial manufacturing of polyhydroxyalkanoates (PHAs) requires purification of PHAs granules from high-cell-density cultures. Cells are broken by homogenization and PHAs granules are cleansed and treated to obtain PHAs latexes. However, cell lysis releases large amounts of DNA which results in an increasing viscosity of the medium, hampering the following downstream steps. Drop in viscosity is generally achieved by costly procedures such as heat treatment or the supplementation of hypochlorite and commercially available nucleases. Searching for a cost-effective solution to this issue, a nuclease gene from Staphylococcus aureus has been integrated into two efficient PHAs-producing bacteria: Cupriavidus necator DSM 545 and Delftia acidovorans DSM 39. Staphylococcal nuclease has been proficiently expressed in both microbial hosts without affecting PHAs production. Moreover, the viscosity of the lysates of recombinant C. necator cells was greatly reduced, indicating that the engineered strain is expected to yield large reduction cost in PHAs downstream processing.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11577/3279389
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 16
social impact