: Despite the large number of studies conducted on archaea associated with extreme environments, the archaeal community composition in food products is still poorly known. Here, we investigated a new insight into exploring the archaeal community in several food matrices, with a particular focus on determining whether living archaea were present. A total of 71 samples of milk, cheese and its derived brine, honey, hamburger, clam, and trout were analyzed by high-throughput 16S rRNA sequencing. Archaea were detected in all the samples, ranging from 0.62 % of microbial communities in trout to 37.71 % in brine. Methanogens dominated 47.28 % of the archaeal communities, except for brine, which was dominated by halophilic taxa affiliated with the genus Haloquadratum (52.45 %). Clams were found to be a food with high richness and diversity of archaea and were targeted for culturing living archaea under different incubation time and temperature conditions. A subset of 16 communities derived from culture-dependent and culture-independent communities were assessed. Among the homogenates and living archaeal communities, the predominant taxa were distributed in the genera Nitrosopumilus (47.61 %) and Halorussus (78.78 %), respectively. A comparison of the 28 total taxa obtained by culture-dependent and culture-independent methods enabled their categorization into different groups, including detectable (8 out of 28), cultivable (8 out of 28), and detectable-cultivable (12 out of 28) taxa. Furthermore, using the culture method, the majority (14 out of 20) of living taxa grew at lower temperatures of 22 and 4 °C during long-term incubation, and few taxa (2 out of 20) were found at 37 °C during the initial days of incubation. Our results demonstrated the distribution of archaea in all analyzed food matrices, which opens new perspectives to expand our knowledge on archaea in foods and their beneficial and detrimental effects.
Characterization of the archaeal community in foods: The neglected part of the food microbiota
Cardin, Marco;Carraro, Lisa;Fasolato, Luca;Cardazzo, Barbara
2023
Abstract
: Despite the large number of studies conducted on archaea associated with extreme environments, the archaeal community composition in food products is still poorly known. Here, we investigated a new insight into exploring the archaeal community in several food matrices, with a particular focus on determining whether living archaea were present. A total of 71 samples of milk, cheese and its derived brine, honey, hamburger, clam, and trout were analyzed by high-throughput 16S rRNA sequencing. Archaea were detected in all the samples, ranging from 0.62 % of microbial communities in trout to 37.71 % in brine. Methanogens dominated 47.28 % of the archaeal communities, except for brine, which was dominated by halophilic taxa affiliated with the genus Haloquadratum (52.45 %). Clams were found to be a food with high richness and diversity of archaea and were targeted for culturing living archaea under different incubation time and temperature conditions. A subset of 16 communities derived from culture-dependent and culture-independent communities were assessed. Among the homogenates and living archaeal communities, the predominant taxa were distributed in the genera Nitrosopumilus (47.61 %) and Halorussus (78.78 %), respectively. A comparison of the 28 total taxa obtained by culture-dependent and culture-independent methods enabled their categorization into different groups, including detectable (8 out of 28), cultivable (8 out of 28), and detectable-cultivable (12 out of 28) taxa. Furthermore, using the culture method, the majority (14 out of 20) of living taxa grew at lower temperatures of 22 and 4 °C during long-term incubation, and few taxa (2 out of 20) were found at 37 °C during the initial days of incubation. Our results demonstrated the distribution of archaea in all analyzed food matrices, which opens new perspectives to expand our knowledge on archaea in foods and their beneficial and detrimental effects.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.