This paper reports the experimental demonstration of time-dependent dielectric breakdown in GaN-based high-electron mobility transistors (HEMTs) submitted to OFF-state stress. Based on combined breakdown measurements, constant voltage stress tests, and 2-D simulations, we demonstrate the following relevant results. First, GaN-based HEMTs with a breakdown voltage higher than 1000 V (evaluated by dc measurements) may show time-dependent failure when exposed to OFF-state stress with V<inf>DS</inf> in the range 600-700 V. Second, time-to-failure (TTF) is Weibull-distributed, and has an exponential dependence on the stress voltage level. Third, time-dependent breakdown is ascribed to the failure of the SiN dielectric at the edge of the gate overhang, on the drain side. Fourth, 2-D simulations confirm that-in this region-the electric field exceeds 6 MV/cm, i.e., the dielectric strength of SiN. Finally, we demonstrate that by limiting the electric field in the nitride through epitaxy and process improvements, it is possible to increase the TTF by three orders of magnitude. © 1963-2012 IEEE.

Extensive Investigation of Time-Dependent Breakdown of GaN-HEMTs Submitted to OFF-State Stress

MENEGHINI, MATTEO;ROSSETTO, ISABELLA;MENEGHESSO, GAUDENZIO;ZANONI, ENRICO
2015

Abstract

This paper reports the experimental demonstration of time-dependent dielectric breakdown in GaN-based high-electron mobility transistors (HEMTs) submitted to OFF-state stress. Based on combined breakdown measurements, constant voltage stress tests, and 2-D simulations, we demonstrate the following relevant results. First, GaN-based HEMTs with a breakdown voltage higher than 1000 V (evaluated by dc measurements) may show time-dependent failure when exposed to OFF-state stress with VDS in the range 600-700 V. Second, time-to-failure (TTF) is Weibull-distributed, and has an exponential dependence on the stress voltage level. Third, time-dependent breakdown is ascribed to the failure of the SiN dielectric at the edge of the gate overhang, on the drain side. Fourth, 2-D simulations confirm that-in this region-the electric field exceeds 6 MV/cm, i.e., the dielectric strength of SiN. Finally, we demonstrate that by limiting the electric field in the nitride through epitaxy and process improvements, it is possible to increase the TTF by three orders of magnitude. © 1963-2012 IEEE.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3184985
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 39
social impact