We discuss the degradation mechanisms of C-doped 0.15-μm gate AlGaN/GaN HEMTs tested by drain step-stress experiments. Experimental results show that these devices exhibit cumulative degradation effects during the step stress experiments in terms of either (i) transconductance (gm) decrease without any threshold-voltage (VT) change under OFF-state stress, or (ii) both VT and gm decrease under ON-state stress conditions. To aid the interpretation of the experiments, two-dimensional hydrodynamic device simulations were carried out. Based on obtained results, we attribute the gm decrease accumulating under OFF-state stress to hole emission from CN acceptor traps in the gate-drain access region of the buffer, resulting in an increase in the drain access resistance. On the other hand, under ON-state stress, channel hot electrons are suggested to be injected into the buffer under the gate and in the gate-drain region where they can be captured by CN traps, leading to VT and gm degradation, respectively

Mechanisms of Step-Stress Degradation In Carbon-Doped 0.15 μm Algan/Gan Hemts for Power RF Applications

Santi, Carlo De;Meneghini, Matteo;Meneghesso, Gaudenzio;Zanoni, Enrico
2023

Abstract

We discuss the degradation mechanisms of C-doped 0.15-μm gate AlGaN/GaN HEMTs tested by drain step-stress experiments. Experimental results show that these devices exhibit cumulative degradation effects during the step stress experiments in terms of either (i) transconductance (gm) decrease without any threshold-voltage (VT) change under OFF-state stress, or (ii) both VT and gm decrease under ON-state stress conditions. To aid the interpretation of the experiments, two-dimensional hydrodynamic device simulations were carried out. Based on obtained results, we attribute the gm decrease accumulating under OFF-state stress to hole emission from CN acceptor traps in the gate-drain access region of the buffer, resulting in an increase in the drain access resistance. On the other hand, under ON-state stress, channel hot electrons are suggested to be injected into the buffer under the gate and in the gate-drain region where they can be captured by CN traps, leading to VT and gm degradation, respectively
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3494560
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact